【總結(jié)】?????????lBAlBlA,且,,即即lP?????????lP?且即確定一平面,CBAlClBlA,,,????ABC??lP?ABl位置關系直線平面點直線
2025-06-05 23:39
【總結(jié)】正弦函數(shù)、余弦函數(shù)的性質(zhì)(2)-----1-1-----1-1-----1-1正弦函數(shù)的圖象性質(zhì):(1)定義域(2)值域R.[-1,1].當且僅當時取得最大值1,當且僅當時取得最小值-1.
2025-06-06 00:28
【總結(jié)】正弦函數(shù)、余弦函數(shù)的性質(zhì)(1)y=sinx、y=cosx的圖象一、復習:2??23?11?.yxO?2....作出y=sinx,y=cosx,x∈[0,2π]的圖象2??23?.yxO?2....-11與x軸的交點(
2025-06-06 00:10
【總結(jié)】正弦函數(shù)、余弦函數(shù)的性質(zhì)(3)正弦函數(shù)的圖象性質(zhì):(1)定義域(2)值域R.[-1,1].當且僅當時取得最大值1,當且僅當時取得最小值-1.Zkkx???,??22Zkkx????,??22(3)奇偶性奇函數(shù).(5
【總結(jié)】直線與平面、平面與平面平行的性質(zhì)一、選擇題1.已知平面α∥平面β,過平面α內(nèi)的一條直線a的平面γ,與平面β相交,交線為直線b,則a,b的位置關系是()A.平行B.相交C.異面D.不確定解析:選A由面面平行的性質(zhì)定理可知選項A正確.2.過平面α外的直線l,作一組平面與α相交
2024-12-09 03:42
【總結(jié)】正切函數(shù)的圖象和性質(zhì)一、回顧正弦函數(shù)的圖象的作法(2)利用正弦線畫正弦函數(shù)的圖象(1)利用描點法畫正弦函數(shù)的圖象xy.023??2?2?1-1....oxy---11---1--?21oA步驟:(1)等分3?2?32?65
2025-06-05 23:52
【總結(jié)】正弦函數(shù)、余弦函數(shù)的圖象新課講授圖象的幾何作法???2,0sin??xxy,由于在單位圓中,角x的正弦線表示其正弦值,因此可將正弦線移動到直角坐標系中確定對應的點(x,sinx),從而作出函數(shù)圖象.PM3?1Oxy1如:作正弦線
【總結(jié)】2.2.4平面與平面平行的性質(zhì),第一頁,編輯于星期六:點四十三分。,第二頁,編輯于星期六:點四十三分。,平面與平面平行的性質(zhì)定理,,第三頁,編輯于星期六:點四十三分。,【思考】分別在兩個平行平面內(nèi)的兩...
2024-10-22 19:09
【總結(jié)】教材研讀A.研讀教材P58-P59:1.直線與平面平行的性質(zhì);2.直線與平面平行的性質(zhì)體現(xiàn)了“線面”維度間怎樣的聯(lián)系?3.直線與平面平行的性質(zhì)定理能否改寫成”?,,“b//ab//aa??????4.例題精析:(1)P54例3:如圖所示的一塊木料中,棱BC平行于面A′C′.①要經(jīng)過面A
2024-11-17 03:40
【總結(jié)】2.&直線與平面、平面與平面平行的判定直線與平面平行的判定[提出問題]門扇的豎直兩邊是平行的,當門扇繞著一邊轉(zhuǎn)動時只要門扇不被關閉,不論轉(zhuǎn)動到什么位置,它能活動的豎直一邊所在直線都與固定的豎直邊所在平面(墻面)存在不變的位置關系.問題1:上述問題中存在著不變的位置關系是指什么?提示
2024-11-18 08:11
【總結(jié)】函數(shù)y=Asin(ωx+φ)的圖象(2)()()yfxyfx?????化歸思想:怎樣由()0yfx???將圖象上的每一個點向左()(或向右0||()yfx??????())平移個單位即得到:函數(shù)y=sin(x+φ),x∈R(其
【總結(jié)】知識回顧1.立體幾何問題的一般分析策略。2.直線與平面,平面與平面平行的判定定理;3.直線與平面,平面與平面平行的性質(zhì)定理;4.異面直線所成的角(或夾角)的分析策略。例題精析例1.(教材P61習題A組T1)例2.(教材P62習題A組T2)例3.(教材P62習題A組T3
2025-03-12 14:51
【總結(jié)】函數(shù)y=Asin(ωx+φ)的圖象(1)知識與方法回顧1.“五點法”作函數(shù)y=sinx簡圖的步驟,其中“五點”是指什么?)0,2(),1,23(),0,(),1,2(),0,0(?????2??23?11?.yxO?2....2.函數(shù)圖象的平移變換法則
【總結(jié)】直線和平面平行的判定(1)直線在平面內(nèi)-----有無數(shù)個公共點??a如圖:(2)直線在平面外:??a①直線a和面α相交:aA???如圖:②直線a和面α平行://a?如圖:.Aa??a?a復習:直線與平面的位置關系有
2024-11-17 12:03
【總結(jié)】教學目的1.掌握直線與平面、平面與平面平行的判定。2.滲透“點線面體”升維降維思想教學目的1.掌握直線與平面、平面與平面平行的判定。2.滲透“點線面體”升維降維思想教材分析重難點:直線與平面、平面與平面的平行判定教材研讀1.判定直線與平面平行的方法A.研讀教材P54-P552.