【總結(jié)】**礦“一通三防”十二項制度一、瓦斯檢查制度1、瓦檢員必須在井下指定地點交接班,認(rèn)真向上一班瓦檢員了解所管轄區(qū)域內(nèi)的通風(fēng)、瓦斯等情況,明確本班工作重點,按規(guī)定進行巡回檢查。2、瓦斯檢查(1)檢查有支架巷道風(fēng)流中的瓦斯時,在距支架或巷道底50mm的巷道空間內(nèi)進行檢查,取最大值為風(fēng)流瓦斯,其余區(qū)域檢查的瓦斯為局部瓦斯。(2)檢查無支架或錨噴砌碹巷道風(fēng)流中的
2025-04-12 04:58
【總結(jié)】數(shù)列通項公式的求法一、近6年全國卷(2009——2014)求數(shù)列通項公式的試題概覽年份試題特點或已知條件類型或方法2009卷1轉(zhuǎn)化,累加法2009卷2,與的關(guān)系,構(gòu)造等差數(shù)列2010卷1,轉(zhuǎn)化,構(gòu)造等比數(shù)列2010新課標(biāo)累加法2011新課標(biāo)是等比數(shù)列,定義法,2012全國卷,轉(zhuǎn)化,構(gòu)造等比數(shù)列2013
2025-06-26 05:32
【總結(jié)】數(shù)列求和方法等差數(shù)列、等比數(shù)列的求和是高考??嫉膬?nèi)容之一,一般數(shù)列求和的基本思想是將其通項變形,化歸為等差數(shù)列或等比數(shù)列的求和問題,或利用代數(shù)式的對稱性,采用消元等方法來求和.下面我們結(jié)合具體實例來研究求和的方法.一、直接求和法(或公式法)將數(shù)列轉(zhuǎn)化為等差或等比數(shù)列,直接運用等差或等比數(shù)列的前n項和公式求得.例1求.解:原式. 由等差數(shù)列求和公式,得原式.二、
2025-07-23 16:03
【總結(jié)】高一數(shù)學(xué)備課組數(shù)列通項一、常用數(shù)列通項1,2,3,4,……1,1,3,5,7,9,……3,5,7,9,11,……2,4,6,8,10,……0,2,4,6,8,……2,4,8,16,32,……1,4,9,16,25,
2024-11-10 01:03
【總結(jié)】遞推數(shù)列通項公式之題根研究遞推數(shù)列通項公式之的題根研究055350河北隆堯一中焦景會電話13085848802[題根]數(shù)列滿足,,求通項公式。[分析]此為型遞推數(shù)列,構(gòu)造新數(shù)列,轉(zhuǎn)化成等比數(shù)列求解。[解答]在兩邊加1,得,則數(shù)列是首項為2,公比為2的等比數(shù)列,得,即為所求。[規(guī)律小結(jié)]型遞推數(shù)列,當(dāng)p=1時,數(shù)列為等
2025-06-07 22:59
【總結(jié)】......數(shù)列等差數(shù)列等比數(shù)列定義數(shù)列{an}的后一項與前一項的差an-an-1為常數(shù)d數(shù)列{an}的后一項與前一項的比為常數(shù)q(q≠0)專有名詞d為公差q為公比通項公式an=a1+(n-1)d
2025-04-17 01:43
【總結(jié)】......待定系數(shù)法求數(shù)列通項公式本文例題的深度層層深入,前面的類型是后面的基礎(chǔ),特別是第一種類型,是學(xué)習(xí)其他幾種類型的充分依據(jù),其他的類型最終都會轉(zhuǎn)變?yōu)榈谝环N類型之后
2025-06-25 16:33
【總結(jié)】等比數(shù)列的通項公式(教案)一、教學(xué)目標(biāo)1、掌握等比數(shù)列的通項公式,并能夠用公式解決一些相關(guān)問題。2、掌握由等比數(shù)列的通項公式推導(dǎo)出的相關(guān)結(jié)論。二、教學(xué)重點、難點各種結(jié)論的推導(dǎo)、理解、應(yīng)用。三、教學(xué)過程1、導(dǎo)入復(fù)習(xí)等比數(shù)列的定義:通項公式:用歸納猜測的方法得到,用累積法證明2、新知探索例1在等比數(shù)列中,(1)
2025-04-17 08:21
【總結(jié)】高三第一輪復(fù)習(xí)《必修五第二章數(shù)列》?第一節(jié)數(shù)列的概念與簡單表示法在教學(xué)中要充分發(fā)揮學(xué)生的主體地位,盡量讓學(xué)生獨立完成包括例題在內(nèi)的題目,教師在于對方法和規(guī)律的總結(jié),在于引導(dǎo)。知識點考試大綱說明考情分析數(shù)列的概念和簡單表示種簡單的表示方法(列表、圖象、通項公式)
2025-08-07 10:50
【總結(jié)】.等差數(shù)列的通項公式及應(yīng)用習(xí)題 一、單選題(每道小題3分共63分) 1.已知等差數(shù)列{an}中,a2=2,a5=8,則數(shù)列的第10項為 A.12B.14C.16D.18 2.已知等差數(shù)列前3項為-3,-1,1,則數(shù)列的第50項為[] A.91B.93C.95D.97 3.已知等差數(shù)列首項為2,末項為62,公差為4
2025-07-25 04:57
【總結(jié)】“數(shù)列通項公式及數(shù)列求和”課例一、設(shè)計理念首先通過解剖導(dǎo)學(xué)案,讓學(xué)生經(jīng)歷知識網(wǎng)絡(luò)的自主構(gòu)建,然后在匯報和例題解法展示活動中進行知識網(wǎng)絡(luò)的完善和思想、方法的總結(jié)提升,以導(dǎo)學(xué)案為載體、立足過程、增強解決數(shù)列綜合題的能力。二、教材分析㈠教材的地位和作用數(shù)列是高中數(shù)學(xué)的一個重要組成部分,數(shù)列是函數(shù)概念的繼續(xù)和延伸,幾乎每年高考試卷中都會出現(xiàn)一道數(shù)列綜合題,且這一部分內(nèi)容與函數(shù)、幾何
【總結(jié)】......1、公式法:等差數(shù)列、等比數(shù)列的通項公式的求法:若在已知數(shù)列中存在:(常數(shù))或的關(guān)系,可采用求等差、等比數(shù)列的通項公式的求法,確定數(shù)列的通項。2、非等差、等比數(shù)列的通項公式的求法。(1)觀察法:通過觀察數(shù)列中的
2025-06-25 02:18
【總結(jié)】等差數(shù)列的通項公式及應(yīng)用習(xí)題 一、單選題(每道小題3分共63分) 1.已知等差數(shù)列{an}中,a2=2,a5=8,則數(shù)列的第10項為 A.12B.14C.16D.18 2.已知等差數(shù)列前3項為-3,-1,1,則數(shù)列的第50項為[] A.91B.93C.95D.97 3.已知等差數(shù)列首項為2,末項為62,公差為4,則這
2025-03-25 06:56
【總結(jié)】?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第5課時數(shù)列的通項與求和要點·疑點·考點求數(shù)列的前n項和Sn,重點應(yīng)掌握以下幾種方法::如果一個數(shù)列{an},與
2024-11-10 07:56
【總結(jié)】一、教學(xué)目標(biāo):1、利用等差數(shù)列的定義,證明一個數(shù)列是否為等差數(shù)列2、利用等差數(shù)列的通項公式,會求一個數(shù)列的通項二、教學(xué)難點利用定義證明一個數(shù)列是等差數(shù)列三、學(xué)情分析:數(shù)列是特殊的函數(shù),學(xué)生剛開始學(xué)習(xí)數(shù)列有點不習(xí)慣,故教學(xué)過程稍微慢一點,利用定義證明的步驟在教學(xué)過程再細一點。
2024-11-09 12:24