【總結(jié)】專題:數(shù)列的通項(xiàng)求通項(xiàng)的常見(jiàn)問(wèn)題:1、特殊數(shù)列的通項(xiàng)2、構(gòu)造特殊數(shù)列,間接求通項(xiàng)3、由Sn求an4、由遞推關(guān)系求an已知數(shù)列{an}中,a1=2。(1)求證:數(shù)列是等差數(shù)列。(2)求數(shù)列{an}的通項(xiàng)公式。『回顧』
2024-11-09 13:17
【總結(jié)】3、數(shù)列求和數(shù)列求和的方法.(1)公式法:?等差數(shù)列的前n項(xiàng)求和公式=__________________=_______________________.?等比數(shù)列的前n項(xiàng)和求和公式(2),數(shù)列的通項(xiàng)公式能夠分解成幾部分,一般用“分組求和法”.(3),數(shù)列的通項(xiàng)公式能夠分解成等差數(shù)列和等比數(shù)列的乘積,一般用“錯(cuò)
2025-03-25 02:52
【總結(jié)】數(shù)列求和—裂項(xiàng)相消專題裂項(xiàng)相消的實(shí)質(zhì)是將數(shù)列中的每項(xiàng)(通項(xiàng))分解,然后重新組合,使之能消去一些項(xiàng),以達(dá)到求和的目的.常見(jiàn)的裂項(xiàng)相消形式有:1.┈┈(分母可分解為的系數(shù)相同的兩個(gè)因式)2.3.4.5.┈┈,,且,求數(shù)列的前n項(xiàng)的和.
2025-03-25 02:51
【總結(jié)】......數(shù)列求和專題復(fù)習(xí)一、公式法:::;;例1:已知,求的前項(xiàng)和.例2:設(shè),,求的最大值.二
【總結(jié)】數(shù)列通項(xiàng)公式的求法集錦非等比、等差數(shù)列的通項(xiàng)公式的求法,題型繁雜,方法瑣碎結(jié)合近幾年的高考情況,對(duì)數(shù)列求通項(xiàng)公式的方法給以歸納總結(jié)。一、累加法形如(n=2、3、4…...)且可求,則用累加法求。有時(shí)若不能直接用,可變形成這種形式,然后用這種方法求解。例1.在數(shù)列{}中,=1,(n=2、3、4……),求{}的通項(xiàng)公式。解:∵這n-1個(gè)等式累加得:=
2025-06-26 05:28
【總結(jié)】數(shù)列求和教學(xué)設(shè)計(jì)鹿城中學(xué)田光海高三數(shù)學(xué)一、教材分析數(shù)列的求和是北師大版高中必修5第一章第內(nèi)容。它是等差數(shù)列和等比數(shù)列的延續(xù),與前面學(xué)習(xí)的函數(shù)也有著密切的聯(lián)系。它是從實(shí)際問(wèn)題中抽離出來(lái)的數(shù)學(xué)模型,實(shí)際問(wèn)題中有廣泛地應(yīng)用。同時(shí),在公式推導(dǎo)過(guò)程中蘊(yùn)含著分類討論等豐富的數(shù)學(xué)思想。二、教法分析基于本節(jié)課是專題方法推導(dǎo)總結(jié)課,應(yīng)著重采用探究式教學(xué)方法。在教學(xué)中以學(xué)生的討論和
2025-04-17 01:44
【總結(jié)】?要點(diǎn)·疑點(diǎn)·考點(diǎn)?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第2課時(shí)等差、等比數(shù)列的通項(xiàng)及求和公式要點(diǎn)·疑點(diǎn)·考點(diǎn)(比)數(shù)列中,Sn,S2n-Sn,S3n-S2n,…,Skn-S
2025-08-16 01:47
【總結(jié)】數(shù)列求和一、公式求和法通過(guò)分析判斷并證明一個(gè)數(shù)列是等差數(shù)列或等比數(shù)列后,可直接利用等差、等比數(shù)列的求和公式求和二、分組求和法有一類數(shù)列,既不是等差數(shù)列,也不是等比數(shù)列,若將這類數(shù)列適當(dāng)拆開(kāi),可分為幾個(gè)等差、等比或常見(jiàn)的數(shù)列,然后分別求和,:①,其中②例:已知數(shù)列的通項(xiàng)公式為求數(shù)列的前項(xiàng)和.三、錯(cuò)位相減法如果一個(gè)數(shù)列的各項(xiàng)是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列的
2025-06-25 02:21
【總結(jié)】通項(xiàng)公式和前n項(xiàng)和1、新課講授:求數(shù)列前N項(xiàng)和的方法1.公式法(1)等差數(shù)列前n項(xiàng)和:特別的,當(dāng)前n項(xiàng)的個(gè)數(shù)為奇數(shù)時(shí),,即前n項(xiàng)和為中間項(xiàng)乘以項(xiàng)數(shù)。這個(gè)公式在很多時(shí)候可以簡(jiǎn)化運(yùn)算。(2)等比數(shù)列前n項(xiàng)和:q=1時(shí),,特別要注意對(duì)公比的討論。(3)其他公式較常見(jiàn)公式:1、2、3、[例1
2025-03-25 02:53
【總結(jié)】......數(shù)列通項(xiàng)公式的求法集錦一,累加法形如(n=2、3、4…...)且可求,則用累加法求。有時(shí)若不能直接用,可變形成這種形式,然后用這種方法求解。例1.在數(shù)列{}中,=1,(n=2、3、4……),求{}的通項(xiàng)公式
2025-08-03 23:50
【總結(jié)】等比、差數(shù)列前n項(xiàng)和的性質(zhì){an}為等比數(shù)列,Sn為其前n項(xiàng)和,則SK,S2K-SK,S3K-S2K,···仍構(gòu)成等比數(shù)列,且有(S2K-SK)2=SK·(S3K-S2K)例{an}中,S10=10,S20=30,求S30.例{an}中,S10=10,S20=30,求S30.{an}為等差
2025-04-30 18:12
【總結(jié)】海豚教育個(gè)性化簡(jiǎn)案學(xué)生姓名:年級(jí):科目:授課日期:月日上課時(shí)間:時(shí)分------時(shí)分合計(jì):小時(shí)教學(xué)目標(biāo)1.復(fù)習(xí)等差數(shù)列和等比數(shù)列的基本定義;2.學(xué)會(huì)通過(guò)作差法
2025-08-04 10:15
【總結(jié)】......數(shù)列的通項(xiàng)公式教學(xué)目標(biāo):使學(xué)生掌握求數(shù)列通項(xiàng)公式的常用方法.教學(xué)重點(diǎn):運(yùn)用疊加法、疊乘法、構(gòu)造成等差或等比數(shù)列及運(yùn)用求數(shù)列的通項(xiàng)公式.教學(xué)難點(diǎn):構(gòu)造成等差或等比數(shù)列及運(yùn)用求數(shù)列的通項(xiàng)公式的方法.教學(xué)時(shí)數(shù):2課
2025-04-17 04:59
【總結(jié)】緒論數(shù)列是中學(xué)數(shù)學(xué)的一項(xiàng)重要內(nèi)容,在中學(xué)數(shù)學(xué)體系中相對(duì)獨(dú)立,但有一定的綜合性和靈活性.高中數(shù)學(xué)中的數(shù)列知識(shí)主要涉及等差、等比數(shù)列的通項(xiàng)公式以及數(shù)列求和等內(nèi)容,能力要求較高.數(shù)列的通項(xiàng)公式是高中數(shù)學(xué)中最為常見(jiàn)的題型之一,它既可考查轉(zhuǎn)化與化歸的數(shù)學(xué)思想,又能反映中學(xué)生對(duì)等差與等比數(shù)列理解的深度,具有一定的技巧性,因此經(jīng)常滲透在數(shù)學(xué)競(jìng)賽和高考中.
2025-01-06 06:52
【總結(jié)】求數(shù)列通項(xiàng)公式專題練習(xí)1、設(shè)是等差數(shù)列的前項(xiàng)和,已知與的等差中項(xiàng)是1,而是與的等比中項(xiàng),求數(shù)列的通項(xiàng)公式2、已知數(shù)列中,,前項(xiàng)和與的關(guān)系是,試求通項(xiàng)公式。3、已知數(shù)列中,,前項(xiàng)和與通項(xiàng)滿足,求通項(xiàng)的表達(dá)式.4、在數(shù)列{}中,=1,(n+1)·=n·,求的表達(dá)式。