【總結(jié)】數(shù)列通項的求法數(shù)列是高中代數(shù)的重要內(nèi)容之一,也是初等數(shù)學(xué)與高等數(shù)學(xué)的銜接點,因而在歷年的高考試題中占有較大的比重,在這類問題中,求數(shù)列的通項往往是解題的突破口、關(guān)鍵點。一、觀察法?觀察法就是觀察數(shù)列特征,橫向看各項之間的結(jié)構(gòu),縱向看各項與項數(shù)n的內(nèi)在聯(lián)系。?適用于一些較簡單、特殊的數(shù)列。例1寫出下列數(shù)列的一
2025-01-08 14:05
【總結(jié)】第四節(jié)數(shù)列的通項基礎(chǔ)梳理:如果數(shù)列{an}的________________之間的關(guān)系可以用一個公式來表示,那么這個公式叫做這個數(shù)列的通項公式.第n項與它的序號n2.數(shù)列的遞推公式:如果已知數(shù)列{an}的首項(或者前幾項),且任意一項an與an-1(或其前面的項)之間的關(guān)系可以______________,那么
2024-11-09 08:08
【總結(jié)】......數(shù)列通項公式的求法集錦一,累加法形如(n=2、3、4…...)且可求,則用累加法求。有時若不能直接用,可變形成這種形式,然后用這種方法求解。例1.在數(shù)列{}中,=1,(n=2、3、4……),求{}的通項公式
2025-08-03 23:50
【總結(jié)】緒論數(shù)列是中學(xué)數(shù)學(xué)的一項重要內(nèi)容,在中學(xué)數(shù)學(xué)體系中相對獨立,但有一定的綜合性和靈活性.高中數(shù)學(xué)中的數(shù)列知識主要涉及等差、等比數(shù)列的通項公式以及數(shù)列求和等內(nèi)容,能力要求較高.數(shù)列的通項公式是高中數(shù)學(xué)中最為常見的題型之一,它既可考查轉(zhuǎn)化與化歸的數(shù)學(xué)思想,又能反映中學(xué)生對等差與等比數(shù)列理解的深度,具有一定的技巧性,因此經(jīng)常滲透在數(shù)學(xué)競賽和高考中.
2025-01-06 06:52
2024-11-12 18:12
【總結(jié)】海豚教育個性化簡案學(xué)生姓名:年級:科目:授課日期:月日上課時間:時分------時分合計:小時教學(xué)目標(biāo)1.復(fù)習(xí)等差數(shù)列和等比數(shù)列的基本定義;2.學(xué)會通過作差法
2025-08-04 10:15
【總結(jié)】求數(shù)列通項公式專題練習(xí)1、設(shè)是等差數(shù)列的前項和,已知與的等差中項是1,而是與的等比中項,求數(shù)列的通項公式2、已知數(shù)列中,,前項和與的關(guān)系是,試求通項公式。3、已知數(shù)列中,,前項和與通項滿足,求通項的表達(dá)式.4、在數(shù)列{}中,=1,(n+1)·=n·,求的表達(dá)式。
2025-03-25 02:52
【總結(jié)】......數(shù)列的通項公式教學(xué)目標(biāo):使學(xué)生掌握求數(shù)列通項公式的常用方法.教學(xué)重點:運用疊加法、疊乘法、構(gòu)造成等差或等比數(shù)列及運用求數(shù)列的通項公式.教學(xué)難點:構(gòu)造成等差或等比數(shù)列及運用求數(shù)列的通項公式的方法.教學(xué)時數(shù):2課
2025-04-17 04:59
【總結(jié)】等差數(shù)列的通項公式復(fù)習(xí)數(shù)列的有關(guān)概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個數(shù)叫做這個數(shù)列的項。數(shù)列中的各項依次叫做這個數(shù)列的第1項(或首項)用表示,1a第2項用表示,2a…,第n項用表示,na…,數(shù)
2025-08-16 02:28
【總結(jié)】等比數(shù)列的通項公式復(fù)習(xí)數(shù)列的有關(guān)概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個數(shù)叫做這個數(shù)列的項。數(shù)列中的各項依次叫做這個數(shù)列的第1項(或首項)用表示,1a第2項用表示,2a…,第n項用表示,na…,數(shù)列的一般形式可以寫成:,1
2025-05-12 21:08
【總結(jié)】數(shù)列通項公式的求法一、近6年全國卷(2009——2014)求數(shù)列通項公式的試題概覽年份試題特點或已知條件類型或方法2009卷1轉(zhuǎn)化,累加法2009卷2,與的關(guān)系,構(gòu)造等差數(shù)列2010卷1,轉(zhuǎn)化,構(gòu)造等比數(shù)列2010新課標(biāo)累加法2011新課標(biāo)是等比數(shù)列,定義法,2012全國卷,轉(zhuǎn)化,構(gòu)造等比數(shù)列2013
2025-06-26 05:32
【總結(jié)】......數(shù)列通項公式的常見求法數(shù)列在高中數(shù)學(xué)中占有非常重要的地位,每年高考都會出現(xiàn)有關(guān)數(shù)列的方面的試題,一般分為小題和大題兩種題型,而數(shù)列的通項公式的求法是??嫉囊粋€知識點,一般常出現(xiàn)在大題的第一小問中,因此掌握好數(shù)列通項公式的
2025-06-26 05:23
【總結(jié)】班級姓名一.選擇題:1.已知數(shù)列{an}的前四項依次是:20,11,2,7,那么它的一個通項公式是()(A)an=9n+11(B)an=-9n+20(C)29n9an??(D)29)1(231a1nn?????2.在數(shù)列{an}中,an+1=a
2025-07-28 15:23
【總結(jié)】高考數(shù)列通項公式研究畢業(yè)論文目錄引言…………………………………………………………………………11求通項公式的方法……………………………………………………………12求通項公式方法選擇策略…………………………………………………123求通項公式注意的問題………………………………………………………13參考文獻(xiàn)…………………………………………………………………
2025-04-17 13:06