【總結(jié)】復(fù)數(shù)與平面向量的聯(lián)系請同學們考慮:1、有關(guān)復(fù)數(shù)的知識,我們學了什么?2、有關(guān)向量的知識,你還記得什么?(1)既有大小又有方向的量叫向量。向量可用有向線段來表示。(2)向量的模:向量的大小叫做向量的模。(3)相等的向量:模相等且方向相同的向量。(4)零向量:模
2024-11-09 09:20
【總結(jié)】高中數(shù)學必修四平面向量參考復(fù)習題答案
2025-01-14 09:45
【總結(jié)】平面向量單元復(fù)習題(一)一、選擇題(本大題共10小題,每小題5分,共50分)1.下列命題正確的是()a,b滿足|a|>|b|且a與b同向,則a>ba、b,
2025-01-09 16:02
【總結(jié)】必修4第二章平面向量檢測:1.以下說法錯誤的是(?。〢.零向量與任一非零向量平行2.下列四式不能化簡為的是( )A. B.C. D.3.已知=(3,4),=(5,12),與則夾角的余弦為()A.B.C.
2025-06-24 19:22
【總結(jié)】必修4第二章平面向量教學質(zhì)量檢測姓名:班級:學號:得分:(5分×12=60分):1.以下說法錯誤的是(?。〢.零向量與任一非零向量平行2.下列四式不能化簡為的是( ?。〢. B.C. D.3.已知=(3,4),=(5,
2025-06-24 19:34
【總結(jié)】用心愛心專心第八章平面向量知識網(wǎng)絡(luò)第1講向量的概念與線性運算★知識梳理★1.平面向量的有關(guān)概念:(1)向量的定義:既有____大小又有方向_________的量叫做向量.(2)表示方法:用有向線段來表示向量.有向線段的____長度_____表示向量的大小,用
2025-01-09 14:49
【總結(jié)】第1節(jié)平面向量的概念及線性運算(對應(yīng)學生用書第59~60頁)1.向量的有關(guān)概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的長度(或稱模).(2)零向量:長度為0的向量叫做零向量,其方向是任意的.(3)單位向量:長度等于1個單位的向量.(4)平行向量:方向相同
2024-11-11 09:01
【總結(jié)】第二章平面向量向量的物理背景與概念向量的幾何表示問題提出t57301p2???????,位移與距離是同一個概念嗎?為什么?,如年齡、身高、體重、力、速度、面積、體積、溫度等,在數(shù)學上,為了正確理解、區(qū)分這些量,我們引進向量的概念.探究(一):向量的物理背景與概念思考1:在物理中,怎
2024-11-11 21:09
【總結(jié)】第2節(jié)平面向量基本定理及其坐標表示(對應(yīng)學生用書第61~62頁)1.向量的夾角(1)定義:已知兩個非零向量a和b,如圖,作OA―→=a,OB―→=b,則∠AOB=θ叫做向量a與b的夾角,也可記作〈a,b〉=θ.(2)范圍:向量夾角θ的范圍是[0,π],a與b同向時,夾角θ
2024-11-12 01:35
【總結(jié)】1、平面向量的坐標表示與平面向量分解定理的關(guān)系。2、平面向量的坐標是如何定義的?3、平面向量的運算有何特點?類似地,由平面向量的分解定理,對于平面上的任意向量,均可以分解為不共線的兩個向量和使得a→11λa→22λa→=a
【總結(jié)】a和b,它們的夾角為θ,則a·b=abcos.a·b稱為向量a與b的數(shù)量積(或內(nèi)積).θa·b等于a的長度a與b在a的方向上的投影bcos的乘積.θ6.a·b≤ab.3.a⊥
2024-11-10 08:35
2024-11-10 00:48
【總結(jié)】第二節(jié)平面向量基本定理及坐標表示分析不易直接用c,d表示,所以可以先由聯(lián)合表示,再進行向量的線性運算,從方程中解出??DABA,??DABA,??NAMA,??DABA,解
【總結(jié)】一、選擇題:(本大題共10小題,每小題4分,,只有一項是符合題目要求的.)1.設(shè)點P(3,-6),Q(-5,2),R的縱坐標為-9,且P、Q、R三點共線,則R點的橫坐標為()。A、-9 B、-6 C、9 D、62.已知=(2,3),b=(-4,7),則在b上的投影為()。A、
2025-06-24 19:26
【總結(jié)】新課標人教版課件系列《高中數(shù)學》必修4《平面向量的物理背景及其含義》教學目標?了解向量的實際背景,理解平面向量的概念和向量的幾何表示;掌握向量的模、零向量、單位向量、平行向量、相等向量、共線向量等概念;并會區(qū)分平行向量、相等向量和共線向量.?通過對向量的學習,使學生初步認識現(xiàn)實生活中的向量和數(shù)量的本質(zhì)區(qū)別