【導(dǎo)讀】向量可用有向線段來。方向相同的向量。所有零向量相等。
【總結(jié)】第二章平面向量向量的物理背景與概念向量的幾何表示問題提出t57301p2???????,位移與距離是同一個(gè)概念嗎?為什么?,如年齡、身高、體重、力、速度、面積、體積、溫度等,在數(shù)學(xué)上,為了正確理解、區(qū)分這些量,我們引進(jìn)向量的概念.探究(一):向量的物理背景與概念思考1:在物理中,怎
2025-11-01 00:48
【總結(jié)】第二節(jié)平面向量基本定理及坐標(biāo)表示分析不易直接用c,d表示,所以可以先由聯(lián)合表示,再進(jìn)行向量的線性運(yùn)算,從方程中解出??DABA,??DABA,??NAMA,??DABA,解
2025-11-03 01:35
【總結(jié)】高一數(shù)學(xué)競(jìng)賽輔導(dǎo)六(向量應(yīng)用)求解平面向量中的數(shù)量積問題,主要有這樣幾種方法:1.利用向量線性運(yùn)算,施行向量的轉(zhuǎn)化;2.建立坐標(biāo)系轉(zhuǎn)化為代數(shù)問題;3.利用向量數(shù)量積的幾何意義解決數(shù)量積的求解問題。4.公式法:(極化法)例1(1)已知平面向量,滿足|+|=3,|-|=1,則=_____.(2)已知平面向量,,
2025-04-04 05:00
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修4《平面向量的物理背景及其含義》教學(xué)目標(biāo)?了解向量的實(shí)際背景,理解平面向量的概念和向量的幾何表示;掌握向量的模、零向量、單位向量、平行向量、相等向量、共線向量等概念;并會(huì)區(qū)分平行向量、相等向量和共線向量.?通過對(duì)向量的學(xué)習(xí),使學(xué)生初步認(rèn)識(shí)現(xiàn)實(shí)生活中的向量和數(shù)量的本質(zhì)區(qū)別
2025-11-02 21:09
【總結(jié)】1.設(shè)、、是單位向量,且·=0,則的最小值為(D)A. B. C.D.解析是單位向量.2.已知向量,則(C) A.B.C.D.解析,故選C.3.平面向量a與b的夾角為,,則(
2025-04-17 13:01
【總結(jié)】平面向量一、選擇題:本大題共10小題,每小題5分,共50分。1、下列向量組中能作為表示它們所在平面內(nèi)所有向量的基底的是()A.B.C.D.2、若ABCD是正方形,E是CD的中點(diǎn),且,,則=()A.B. ?。茫模?、若向量與不共線,,且
2025-06-24 15:17
【總結(jié)】高中數(shù)學(xué)精講精練第四章平面向量與復(fù)數(shù)【知識(shí)圖解】Ⅰ.平面向量知識(shí)結(jié)構(gòu)表Ⅱ.復(fù)數(shù)的知識(shí)結(jié)構(gòu)表【方法點(diǎn)撥】由于向量融形、數(shù)于一體,具有幾何形式與代數(shù)形式的“雙重身份”,使它成為了中學(xué)數(shù)學(xué)知識(shí)的一個(gè)重要
2025-08-11 14:53
【總結(jié)】第五章向量平面向量的數(shù)量積及運(yùn)算律(2)平面向量的數(shù)量積及運(yùn)算律(2)一.復(fù)習(xí):1、平面向量的數(shù)量積的定義記作=已知兩個(gè)非零向量和,它們的夾角為?,我們把數(shù)量abba?即有
2025-08-01 17:41
【總結(jié)】必修4第二章平面向量教學(xué)質(zhì)量檢測(cè)姓名:班級(jí):學(xué)號(hào):得分:(5分×12=60分):1.以下說法錯(cuò)誤的是( )A.零向量與任一非零向量平行2.下列四式不能化簡(jiǎn)為的是( ?。〢. B.C. D.3.已知=(3,4),=(
2025-06-24 19:26
【總結(jié)】.高一數(shù)學(xué)第八章平面向量第一講向量的概念與線性運(yùn)算一.【要點(diǎn)精講】1.向量的概念①向量:既有大小又有方向的量。幾何表示法,;坐標(biāo)表示法。向量的模(長(zhǎng)度),記作||.即向量的大小,記作||。向量不能比較大小,但向量的??梢员容^大小.②零向量:長(zhǎng)度為0的向量,記為,其方向是任意的,規(guī)定平行于任何向量。(與0的區(qū)別)③單位向量||=1。④平行向量(共線向量)
2025-04-04 04:58
【總結(jié)】 回扣2 復(fù)數(shù)、平面向量 1.復(fù)數(shù)的相關(guān)概念及運(yùn)算法則 (1)復(fù)數(shù)z=a+bi(a,b∈R)的分類 ①z是實(shí)數(shù)?b=0; ②z是虛數(shù)?b≠0; ③z是純虛數(shù)?a=0且b≠0. (2)...
2025-04-03 02:00
【總結(jié)】向量的加法以前由于上海和臺(tái)北沒有直航,某人春節(jié)從臺(tái)北回上海探親,乘飛機(jī)要先從臺(tái)北到香港,再從香港到上海,這兩次位移和是什么?現(xiàn)在從上海到臺(tái)北有直航了嗎?直航的位移與前兩次的位移和一樣嗎?上海臺(tái)北香港上海臺(tái)北香港CAB1.向量加法的定義:(1)
2025-11-02 06:00
【總結(jié)】向量的減法1、向量加法的三角形法則baOaaaaaaaabbbbbbbBbaA注意:a+b各向量“首尾相連”,和向量由第一個(gè)向量的起點(diǎn)指向最后一個(gè)向量的終點(diǎn).溫故知新baAaaaaaaaabbb
2025-10-31 09:21
【總結(jié)】德州市實(shí)驗(yàn)中學(xué)顧業(yè)振復(fù)習(xí)提問:1、什么叫向量?一般用什么表示?2、什么叫平行向量?3、什么叫相等向量?既有大小又有方向的量叫向量,一般用有向線段表示。方向相同或相反的非零向量叫平行向量。長(zhǎng)度相等且方向相同的向量叫相等向量。引例(1).某人從A到B,再從B
2025-10-31 05:07
【總結(jié)】第三節(jié)平面向量的數(shù)量積及平面向量的應(yīng)用舉例基礎(chǔ)梳理(1)定義已知兩個(gè)向量a和b,作=a,=b,則∠AOB=θ叫做向量a與b的夾角.(2)范圍向量夾角θ的取值范圍是,a與b同向時(shí),夾角θ=
2025-11-03 16:44