【總結(jié)】第五章平面向量【考綱說(shuō)明】1、理解平面向量的概念和幾何表示,理解兩個(gè)向量相等及共線的
2025-06-25 07:34
【總結(jié)】高三數(shù)學(xué)專題復(fù)習(xí)79班級(jí):姓名:時(shí)間:平面向量的加減運(yùn)算一.知識(shí)梳理1、向量加法:設(shè),則+==作圖法:平行四邊形法則(共起點(diǎn)),三角形法則(首尾相接).2、向量減法:向量加上的相反向量叫做與的差,③作圖法:可以表示為從的終點(diǎn)指向的終點(diǎn)的向量(、有共同起點(diǎn))
2025-06-19 22:03
【總結(jié)】平面向量一.向量有關(guān)概念:1.向量的概念:既有大小又有方向的量,注意向量和數(shù)量的區(qū)別。向量常用有向線段來(lái)表示,注意不能說(shuō)向量就是有向線段,為什么?(向量可以平移)。如:2.零向量:長(zhǎng)度為0的向量叫零向量,記作:,注意零向量的方向是任意的;3.單位向量:長(zhǎng)度為一個(gè)單位長(zhǎng)度的向量叫做單位向量(與共線的單位向量是);4.相等向量:長(zhǎng)度相等且方向相同的兩個(gè)向量叫相等向量,相等向量有傳
2025-06-25 08:09
【總結(jié)】第4節(jié)平面向量的應(yīng)用(對(duì)應(yīng)學(xué)生用書(shū)第66頁(yè))1.向量在平面幾何中的應(yīng)用平面向量在平面幾何中的應(yīng)用主要是用向量的線性運(yùn)算和數(shù)量積解決平行、垂直、長(zhǎng)度、夾角等問(wèn)題.設(shè)a=(x1,y1),b=(x2,y2),①證明線線平行或點(diǎn)共線問(wèn)題,主要利用共線向量定理,即a∥b?a=λb(b≠0)?x1y2-x
2024-11-11 06:00
【總結(jié)】平面向量數(shù)量積的坐標(biāo)表示四川省沐川中學(xué)劉少民平面向量數(shù)量積復(fù)習(xí)a和b,它們的夾角為θ,則a&
2024-11-09 05:07
【總結(jié)】......平面向量知識(shí)點(diǎn)小結(jié)一、向量的基本概念:既有大小又有方向的量,.注意:不能說(shuō)向量就是有向線段,為什么?提示:向量可以平移.舉例1已知,,則把向量按向量平移后得到的向量是_____.結(jié)果::長(zhǎng)
2025-06-25 07:54
【總結(jié)】Oxya引入:,點(diǎn)A可以用什么來(lái)表示??OxyA(a,b)aba:如果e1,e2是同一平面內(nèi)的兩個(gè)不共線的向量,那么對(duì)于這一平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù)λ1,λ2使得a=λ1e1+λ2e2.不共線的兩向量e1,e2叫做這一平面內(nèi)所
2024-11-09 04:47
【總結(jié)】平面向量與空間向量知識(shí)點(diǎn)對(duì)比內(nèi)容平面向量空間向量定義既有大小,又有方向既有大小,又有方向表示方法(1)用有向線段表示;(2)用或a,b,c表示模向量的長(zhǎng)度,用||或|a|表示零向量長(zhǎng)度為0的向量,記為a單位向量模為1的向量叫做單位向量相等向量長(zhǎng)度相等,方向相同的向量叫做相等向量相反向量長(zhǎng)度相
2025-06-19 22:59
【總結(jié)】第三節(jié)平面向量的數(shù)量積及平面向量應(yīng)用舉例解分析用數(shù)量積和模的定義以及運(yùn)算性質(zhì),逐題計(jì)算.79642)(||)4(3427158||3120cos||||5||2352)3()2)(3(.594||||2.32132120cos||||12222o2222222o???????????
2024-11-11 09:01
【總結(jié)】第二章平面向量向量的物理背景與概念向量的幾何表示問(wèn)題提出t57301p2???????,位移與距離是同一個(gè)概念嗎?為什么?,如年齡、身高、體重、力、速度、面積、體積、溫度等,在數(shù)學(xué)上,為了正確理解、區(qū)分這些量,我們引進(jìn)向量的概念.探究(一):向量的物理背景與概念思考1:在物理中,怎
2024-11-11 21:09
2024-11-10 00:48
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修42.3.3《平面向量的坐標(biāo)運(yùn)算》教學(xué)目的?(1)理解平面向量的坐標(biāo)的概念;?(2)掌握平面向量的坐標(biāo)運(yùn)算;?(3)會(huì)根據(jù)向量的坐標(biāo),判斷向量是否共線.?教學(xué)重點(diǎn):平面向量的坐標(biāo)運(yùn)算?教學(xué)難點(diǎn):向量的坐標(biāo)表示的理解及運(yùn)算的準(zhǔn)確性.
【總結(jié)】平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)運(yùn)算平面向量的坐標(biāo)表示1.平面向量基本定理的內(nèi)容?什么叫基底?a=xi+yj.有且只有一對(duì)實(shí)數(shù)x、y,使得2.分別與x軸、y軸方向相同的兩單位向量i、j能否作
2024-11-09 09:20
【總結(jié)】第二節(jié)平面向量基本定理及坐標(biāo)表示分析不易直接用c,d表示,所以可以先由聯(lián)合表示,再進(jìn)行向量的線性運(yùn)算,從方程中解出??DABA,??DABA,??NAMA,??DABA,解
2024-11-12 01:35
【總結(jié)】平面向量一、選擇題:本大題共10小題,每小題5分,共50分。1、下列向量組中能作為表示它們所在平面內(nèi)所有向量的基底的是()A.B.C.D.2、若ABCD是正方形,E是CD的中點(diǎn),且,,則=()A.B. C.D.3、若向量與不共線,,且
2025-06-24 15:17