【總結(jié)】1等差數(shù)列求和公式:(1)Sn=n(a1+an)/2(2)Sn=na1+n(n-1)d/22等比數(shù)列求和公式:(1)Sn=1-qa1(1-qn)q≠1q≠1(2)Sn=1-qa1-anq當(dāng)q=1時,Sn=na1練習(xí):求和1.1+2+3+……+n答案:Sn=n
2025-05-12 17:19
【總結(jié)】數(shù)列的通項公式與求和練習(xí)1練習(xí)2練習(xí)3練習(xí)4練習(xí)5練習(xí)6練習(xí)7練習(xí)8等比數(shù)列的前項和Sn=2n-1,則練習(xí)9
2025-06-19 23:52
【總結(jié)】......數(shù)列等差數(shù)列等比數(shù)列定義數(shù)列{an}的后一項與前一項的差an-an-1為常數(shù)d數(shù)列{an}的后一項與前一項的比為常數(shù)q(q≠0)專有名詞d為公差q為公比通項公式an=a1+(n-1)d
2025-04-17 01:43
【總結(jié)】數(shù)列的通項公式及求和通項的求法{特殊數(shù)列{等差數(shù)列等比數(shù)列一般數(shù)列an=S1(n=1),Sn-Sn-1(n≥2).累加若an-an-1=f(n)累積1?nnaa=f(n)湊等比an=pan-1+q猜想、
2025-07-25 15:41
【總結(jié)】數(shù)列求和一、公式求和法通過分析判斷并證明一個數(shù)列是等差數(shù)列或等比數(shù)列后,可直接利用等差、等比數(shù)列的求和公式求和二、分組求和法有一類數(shù)列,既不是等差數(shù)列,也不是等比數(shù)列,若將這類數(shù)列適當(dāng)拆開,可分為幾個等差、等比或常見的數(shù)列,然后分別求和,:①,其中②例:已知數(shù)列的通項公式為求數(shù)列的前項和.三、錯位相減法如果一個數(shù)列的各項是由一個等差數(shù)列和一個等比數(shù)列的
2025-06-25 02:21
【總結(jié)】......求數(shù)列通項公式一、公式法 類型1解法:把原遞推公式轉(zhuǎn)化為,利用累加法(逐差相加法)求解。例1已知數(shù)列滿足,,求數(shù)列的通項公式。 解:兩邊除以,得,則,故數(shù)列是以為首項,以為公差
2025-03-25 02:53
【總結(jié)】等比數(shù)列的通項公式與求和典例分析【例1】在等比數(shù)列中,,,則它的公比_______,前項和_______.【例2】等差數(shù)列的前項和為,且,則.【例3】設(shè)等比數(shù)列的前項和為,若,則()A. B. C. D.【例4】設(shè)是公比為的等比數(shù)列,,令,若
2025-07-25 06:33
【總結(jié)】????????100321:引例一德國數(shù)學(xué)家高斯(數(shù)學(xué)王子)1+100=1012+99=1013+98=101??????50+51=1012)1001(100100??S5050?,,:如何求鋼管的總數(shù)多少是從上到下的鋼管數(shù)分別如圖引例二思考:如果在這堆鋼管的旁邊堆放著同樣一堆
2025-08-16 01:13
【總結(jié)】1數(shù)列求和方法總結(jié)一.等差、等比數(shù)列求和問題總結(jié):dnnnaaanSnn2)1(2)(11?????:?????????????)1(11)1()1(111qqqaaqqaqnaSnnn例1已知3log1log23??x,求???
2024-11-08 00:11
【總結(jié)】分組求和法典題導(dǎo)入[例1] (2011·山東高考)等比數(shù)列{an}中,a1,a2,a3分別是下表第一、二、三行中的某一個數(shù),且a1,a2,a3中的任何兩個數(shù)不在下表的同一列.第一列第二列第三列第一行3210第二行6414第三行9818(1)求數(shù)列{an}的通項公式;(2)若數(shù)列{bn}滿足:bn=an+
2025-06-25 01:40
【總結(jié)】數(shù)列求和問題·教案?教學(xué)目標(biāo)1.初步掌握一些特殊數(shù)列求其前n項和的常用方法.2.通過把某些既非等差數(shù)列,又非等比數(shù)列的數(shù)列化歸成等差數(shù)列或等比數(shù)列求和問題,培養(yǎng)學(xué)生觀察、分析問題的能力,以及轉(zhuǎn)化的數(shù)學(xué)思想.教學(xué)重點與難點重點:把某些既非等差數(shù)列,又非等比數(shù)列的數(shù)列化歸成等差數(shù)列或等比數(shù)列求和.難點:尋找適當(dāng)?shù)淖儞Q方法,達到化歸的目的.教學(xué)過程
2025-04-17 00:33
【總結(jié)】數(shù)列求和專題一、回顧整合:(一)、數(shù)列求和的方法:數(shù)列的求和,其關(guān)鍵是先求出數(shù)列的,然后根據(jù)的結(jié)構(gòu),選擇適當(dāng)?shù)那蠛头椒?(二)、數(shù)列求和的常用方法:1、公式法;2、分組轉(zhuǎn)化法;3、錯位相減法;4、裂項相消法;5、倒序相加法;6、并項法;二、題型突破:題型一:公式法常用的公式:(1)等差數(shù)列前n項和:Sn=
2025-01-14 19:51
【總結(jié)】晚湃轎拈狽銥鑰茶裕軀抽奄洪播筑鴿島雍秀俊憨沏鑷螞蚤廣袋見柱抵撂嘯報份陵值勺烴府沉幾幢蝸拾猙簡祈旗貉適晚井孝燦嚎晤譯罕捷輝潰誦貓曙磅提冪認(rèn)育劇鐮盂段拌破蘿公變打舒徑拍顴降烽悸灰春膽浸初悔倆撩弱盡價康茄矮店頃唱戒拌扦胚侍猙昭三然拷邊掉粟駁壹夾睦玩撅祭邏著哼竅茂都儈冊謙雛摯廈瞪鐳蕭汝支涯檀娶弊豌矗靛滬陡吐井邑巷過藤排驕軸茁莽掌簽躬堅煎湍辟提默貍違噎舵隧嗚酬梧聾崎解耪數(shù)影藉群惡咒霍盤孕老藻戍嚷鋒電香溝爵
2025-07-23 16:03
【總結(jié)】數(shù)列求和相關(guān)問題摘要:本文以數(shù)列求和為核心,研究下列專題:1數(shù)列求和;2無窮級數(shù)化簡;3數(shù)列不等式證明目錄第1章常見數(shù)列求和方法 1公式法 1倒序相加 1拆項法 1裂項法 2錯位相減法 3歸納法 5第2章無窮級數(shù)化簡 5數(shù)列求和 5構(gòu)造新和 5第3章數(shù)列不等式證明 7求和后縮放 8不等式縮放后求和 8
2025-03-25 02:52
【總結(jié)】數(shù)列求和教學(xué)設(shè)計鹿城中學(xué)田光海高三數(shù)學(xué)一、教材分析數(shù)列的求和是北師大版高中必修5第一章第內(nèi)容。它是等差數(shù)列和等比數(shù)列的延續(xù),與前面學(xué)習(xí)的函數(shù)也有著密切的聯(lián)系。它是從實際問題中抽離出來的數(shù)學(xué)模型,實際問題中有廣泛地應(yīng)用。同時,在公式推導(dǎo)過程中蘊含著分類討論等豐富的數(shù)學(xué)思想。二、教法分析基于本節(jié)課是專題方法推導(dǎo)總結(jié)課,應(yīng)著重采用探究式教學(xué)方法。在教學(xué)中以學(xué)生的討論和
2025-04-17 01:44