【總結】數(shù)列知識點及方法歸納1.等差數(shù)列的定義與性質(zhì)定義:(為常數(shù)),等差中項:成等差數(shù)列前項和性質(zhì):是等差數(shù)列(1)若,則(2)數(shù)列仍為等差數(shù)列,仍為等差數(shù)列,公差為;(3)若三個成等差數(shù)列,可設為(4)若是等差數(shù)列,且前項和分別為,則(5)為等差數(shù)列(為常數(shù),是關于的常數(shù)項為0的二次函數(shù))的最值可求二次函數(shù)的最值;或者求出中的正、負分界項,即:當,解
2025-08-05 09:35
【總結】數(shù)列求和的基本方法和技巧[例1]已知,求的前n項和.[例2]設Sn=1+2+3+…+n,n∈N*,求的最大值.二、錯位相減法求和這種方法是在推導等比數(shù)列的前n項和公式時所用的方法,這種方法主要用于求數(shù)列{an· bn}的前n項和,其中{an}、{bn}分別是等差數(shù)
2025-07-23 16:03
【總結】內(nèi)江師范學院學年論文各專業(yè)全套優(yōu)秀畢業(yè)設計圖紙目錄摘要......................................................................錯誤!未定義書簽。ABSTRACT.........................................................
2025-08-15 12:40
【總結】數(shù)列求和的基本方法和技巧一、利用常用求和公式求和利用下列常用求和公式求和是數(shù)列求和的最基本最重要的方法.1、等差數(shù)列求和公式:2、等比數(shù)列求和公式:3、4、5、例1已知,求的前n項和.解:由由等比數(shù)列求和公式得(利用常用公式)
2025-07-25 06:38
【總結】分組求和法典題導入[例1] (2011·山東高考)等比數(shù)列{an}中,a1,a2,a3分別是下表第一、二、三行中的某一個數(shù),且a1,a2,a3中的任何兩個數(shù)不在下表的同一列.第一列第二列第三列第一行3210第二行6414第三行9818(1)求數(shù)列{an}的通項公式;(2)若數(shù)列{bn}滿足:bn=an+
2025-06-25 01:40
【總結】新夢想教育數(shù)列求和的基本方法和技巧利用下列常用求和公式求和是數(shù)列求和的最基本最重要的方法.1、等差數(shù)列求和公式:2、等比數(shù)列求和公式:3、自然數(shù)列4、自然數(shù)平方組成的數(shù)列[例1]已知,求的前n項和.解:由由等比
2025-04-17 08:19
【總結】數(shù)列求和問題·教案?教學目標1.初步掌握一些特殊數(shù)列求其前n項和的常用方法.2.通過把某些既非等差數(shù)列,又非等比數(shù)列的數(shù)列化歸成等差數(shù)列或等比數(shù)列求和問題,培養(yǎng)學生觀察、分析問題的能力,以及轉化的數(shù)學思想.教學重點與難點重點:把某些既非等差數(shù)列,又非等比數(shù)列的數(shù)列化歸成等差數(shù)列或等比數(shù)列求和.難點:尋找適當?shù)淖儞Q方法,達到化歸的目的.教學過程
2025-04-17 00:33
【總結】數(shù)列求和專題一、回顧整合:(一)、數(shù)列求和的方法:數(shù)列的求和,其關鍵是先求出數(shù)列的,然后根據(jù)的結構,選擇適當?shù)那蠛头椒?(二)、數(shù)列求和的常用方法:1、公式法;2、分組轉化法;3、錯位相減法;4、裂項相消法;5、倒序相加法;6、并項法;二、題型突破:題型一:公式法常用的公式:(1)等差數(shù)列前n項和:Sn=
2025-01-14 19:51
【總結】數(shù)列求和相關問題摘要:本文以數(shù)列求和為核心,研究下列專題:1數(shù)列求和;2無窮級數(shù)化簡;3數(shù)列不等式證明目錄第1章常見數(shù)列求和方法 1公式法 1倒序相加 1拆項法 1裂項法 2錯位相減法 3歸納法 5第2章無窮級數(shù)化簡 5數(shù)列求和 5構造新和 5第3章數(shù)列不等式證明 7求和后縮放 8不等式縮放后求和 8
2025-03-25 02:52
【總結】數(shù)列求和教學設計鹿城中學田光海高三數(shù)學一、教材分析數(shù)列的求和是北師大版高中必修5第一章第內(nèi)容。它是等差數(shù)列和等比數(shù)列的延續(xù),與前面學習的函數(shù)也有著密切的聯(lián)系。它是從實際問題中抽離出來的數(shù)學模型,實際問題中有廣泛地應用。同時,在公式推導過程中蘊含著分類討論等豐富的數(shù)學思想。二、教法分析基于本節(jié)課是專題方法推導總結課,應著重采用探究式教學方法。在教學中以學生的討論和
2025-04-17 01:44
【總結】教師姓名學科數(shù)學上課時間講義序號學生姓名年級組長簽字日期課題名稱常見數(shù)列通項公式及求和公式求法教學目標1、掌握幾種常見數(shù)列通項公式求法2、掌握幾種常見數(shù)列求和公式求法教學重、難點
2025-07-23 16:02
【總結】數(shù)列求和的基本方法和技巧利用下列常用求和公式求和是數(shù)列求和的最基本最重要的方法.1、等差數(shù)列求和公式:2、等比數(shù)列求和公式:3、自然數(shù)列4、自然數(shù)平方組成的數(shù)列[例1]已知,求的前n項和.解:由由等比數(shù)列求和公式得(利用常用公式)
2025-06-27 23:13
【總結】3、數(shù)列求和數(shù)列求和的方法.(1)公式法:?等差數(shù)列的前n項求和公式=__________________=_______________________.?等比數(shù)列的前n項和求和公式(2),數(shù)列的通項公式能夠分解成幾部分,一般用“分組求和法”.(3),數(shù)列的通項公式能夠分解成等差數(shù)列和等比數(shù)列的乘積,一般用“錯
【總結】割之彌細,所失彌少,割之又割,以至于不可割,則與圓合體而無所失矣.溫馨提示:請點擊相關欄目。整知識·萃取知識精華整方法·啟迪發(fā)散思維考向分層突破一考向分層突破二考向分層突破三整知識萃取知識精華結束放映返回導航頁
2025-01-13 09:23
【總結】數(shù)列與不等式證明方法歸納共歸納了五大類,16種放縮技巧,30道典型例題及解析,供日后學習使用。1、數(shù)列求和(1)放縮成等比數(shù)列再求和(2)放縮成差比數(shù)列再錯位相減求和(3)放縮成可裂項相消再求和(4)數(shù)列和比大小可比較單項2、公式、定理(1)利用均值不等式(2)利用二項式定理(3)利用不動點定理(4)利用二次函數(shù)性質(zhì)3、累加、
2025-06-18 05:08