【總結】第27講│數(shù)列求和第27講數(shù)列求和第27講│知識梳理知識梳理求數(shù)列的前n項和,一般有下列幾種方法:1.等差數(shù)列的前n項和公式:Sn=____________=____________.(其中a1為首項,d為公差)na1+n(n-1)2d
2024-11-11 21:09
【總結】數(shù)列求和常見解題方法第二章數(shù)列課題鞠光炳)1(21,)1(???nnSnann1、記憶法:適用于常見數(shù)列求和nnSnann???2,2)3(6)12)(1(,)4(2????nnnSnann2,12)2(nSnann???12,2)5(1????nnnnSa2
2025-09-19 20:33
【總結】?掌握數(shù)列求和的幾種常見方法.?【命題預測】?數(shù)列的求和在近幾年高考中,填空題與解答題都有出現(xiàn),重點以容易題和中檔題為主,基本知識以客觀題出現(xiàn),綜合知識則多以解答題體現(xiàn),主要是探索型和綜合型題目.復習時,要具有針對性地訓練,并以“注重數(shù)學思想方法、強化運算能力、重點知識重點訓練”的角度做好充分準備.第
2025-01-07 07:27
【總結】????????100321:引例一德國數(shù)學家高斯(數(shù)學王子)1+100=1012+99=1013+98=101??????50+51=1012)1001(100100??S5050?,,:如何求鋼管的總數(shù)多少是從上到下的鋼管數(shù)分別如圖引例二思考:如果在這堆鋼管的旁邊堆放著同樣一堆鋼管,如
2025-08-16 00:55
【總結】一、公式法1.如果一個數(shù)列是等差數(shù)列或等比數(shù)列,則求和時直接利用等差、等比數(shù)列的前n項和公式,注意等比數(shù)列公比q的取值情況要分q=1或q≠1.(1)1+2+3+4+…+n=(2)1+3+5+7+…+2n-1=(3)2+4+6+8+…+2n=n?n+1
2025-08-05 07:30
【總結】等差數(shù)列求和公式:}{項和為的前數(shù)列nannsnnaaaas?????...321???1nnssna13211???????nnaaaas...10歲的高斯(德國)的算法:?首項與末項的和:1+100=101?第2項與倒數(shù)第2項的和:2+99=101?第3項與倒數(shù)第3項的和:3+98=101?
2025-08-16 01:37
【總結】數(shù)列求和基本方法:?公式法?分組求和法?錯位相減法?裂項相消法?并項求合法一.公式法:①等差數(shù)列的前n項和公式:②等比數(shù)列的前n項和公式:③④⑤
2025-08-15 23:37
【總結】德國數(shù)學家高斯(數(shù)學王子)1+100=1012+99=1013+98=10150+51=1015050思考:如果在這堆鋼管的旁邊堆放著同樣一堆鋼管,如何求兩堆鋼管總數(shù)?2.聯(lián)想:(補成平行四邊形)59510100-25032105002255026(分割成一
2024-11-09 00:27
【總結】1題目:數(shù)列的求和2等差數(shù)列的求和公式:等比數(shù)列的求和公式:dnnnaaansnn)1(212)(11???????1?q??1?q3例2:求數(shù)列11111,2,3,424816……的前n項和21nn??n解:因為a1111(1
2025-01-06 16:34
【總結】數(shù)列求和學習目標1、掌握數(shù)列求和的基本方法。2、理解數(shù)列求和過程中相關的數(shù)學思想.幾種重要的思想方法::如果一個數(shù)列{an},與首末兩項等距的兩項之和等于首末兩項之和,可采用把正著寫和與倒著寫和的兩個和式相加,就得到一個常數(shù)列的和,這一求和的方法稱為倒序相加法.:如果一個數(shù)列的
2025-09-25 19:34
【總結】第十四講:數(shù)列求和及綜合應用一、考綱和課標要求:1、掌握數(shù)列求和的常見的基本方法2、解決數(shù)列間綜合及數(shù)列與其他知識綜合的相關問題3、09考綱有2個C級要求在這部分出現(xiàn)二:本專題需解決的問題:(1)化歸為基本數(shù)列的求和問題(2)數(shù)列間的綜合(基本數(shù)列、關聯(lián)數(shù)列)(3)數(shù)列與其
2024-11-12 01:26
【總結】數(shù)列求和復習:1、數(shù)列和的定義數(shù)列{an}的前n項和Sn=2n2-3n+1,則a4+a5+a6+…+a10=____2、等差、等比數(shù)列的前n項和的公式3、在等差、等比數(shù)列的前n項和的公式中運用了哪些求思想:①(等差數(shù)列)倒序相加②(等比數(shù)列)錯
2025-07-25 15:40
2025-07-26 07:29
【總結】第六章數(shù)列知識要點探究一:觀察法求數(shù)列通項探究二:由nS求na[例3]根據(jù)下列條件,確定數(shù)列{an}的通項公式.(1)a1=1,an+1=3an+2;(2)a1=1,an=n-1na
2025-05-02 18:37
【總結】1等差數(shù)列求和公式:(1)Sn=n(a1+an)/2(2)Sn=na1+n(n-1)d/22等比數(shù)列求和公式:(1)Sn=1-qa1(1-qn)q≠1q≠1(2)Sn=1-qa1-anq當q=1時,Sn=na1練習:求和1.1+2+3+……+n答案:Sn=n
2025-05-12 17:19