【總結(jié)】立體幾何大題專(zhuān)練1、如圖,已知PA⊥矩形ABCD所在平面,M、N分別為AB、PC的中點(diǎn);(1)求證:MN//平面PAD(2)若∠PDA=45°,求證:MN⊥平面PCD2(本小題滿(mǎn)分12分)如圖,在三棱錐中,分別為的中點(diǎn).PACEBF(1)求證:平面;(2)若平面平面,且,,求證:平面平面.(1)證明:連
2025-06-23 03:46
【總結(jié)】高考文科數(shù)學(xué)立體幾何大題題型基本平行、垂直證明.(2013年高考北京卷(文))如圖,在四棱錐中,,,,平面底面,,和分別是和的中點(diǎn),求證:(1)底面;(2)平面;(3)平面平面【答案】(I)因?yàn)槠矫鍼AD⊥平面ABCD,且PA垂直于這個(gè)平面的交線(xiàn)AD所以PA垂直底面ABCD.(II)因?yàn)锳B∥CD,CD=2AB,E為CD的中點(diǎn)所以AB∥DE,且AB=DE
2025-03-25 03:14
【總結(jié)】(2012江西?。ū拘☆}滿(mǎn)分12分)如圖,在梯形ABCD中,AB∥CD,E,F(xiàn)是線(xiàn)段AB上的兩點(diǎn),且DE⊥AB,CF⊥AB,AB=12,AD=5,BC=4,DE=△ADE,△CFB分別沿DE,CF折起,使A,B兩點(diǎn)重合與點(diǎn)G,得到多面體CDEFG.(1)求證:平面DEG⊥平面CFG;(2)求多面體CDEFG的體積。2012,山東(19)(本小題滿(mǎn)分12分)如圖,
2025-04-17 13:07
【總結(jié)】立體幾何大題1.如下圖,一個(gè)等腰直角三角形的硬紙片ABC中,∠ACB=90°,AC=4cm,CD是斜邊上的高沿CD把△ABC折成直二面角.ABC第1題圖ABCD第1題圖(1)如果你手中只有一把能度量長(zhǎng)度的直尺,應(yīng)該如何確定A,B的位置,使二面角A-CD-B是直二面角?證明你的結(jié)論.(2)試在平面AB
2025-04-17 13:17
【總結(jié)】文科數(shù)學(xué)立體幾何大題題型題型一、基本平行、垂直1、如圖,在四棱臺(tái)中,平面,底面是平行四邊形,,,60°.(Ⅰ)證明:;(Ⅱ)證明:.2.如圖,四棱錐中,四邊形為矩形,為等腰三角形,,平面平面,且.分別為和的中點(diǎn).(1)證明:平面;(2)證明:平面平面;(3)求四棱錐的體積.
【總結(jié)】理科數(shù)學(xué)高考立體幾何大題精選不建系求解1.本小題滿(mǎn)分12分)(注意:在試題卷上作答無(wú)效)如圖,四棱錐S-ABCD中,SD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=SD=2,E為棱SB上的一點(diǎn),平面EDC平面SBC.(Ⅰ)證明:SE=2EB;(Ⅱ)求二面角A-DE-C的大小.2.(本小
2025-04-17 06:43
【總結(jié)】立體幾何大題練習(xí)(文科):1.如圖,在四棱錐S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,側(cè)面SAD⊥底面ABCD.(1)求證:平面SBD⊥平面SAD;(2)若∠SDA=120°,且三棱錐S﹣BCD的體積為,求側(cè)面△SAB的面積.【分析】(1)由梯形ABCD,設(shè)BC=a,則CD=a,AB=2a,運(yùn)用勾股定理
2025-03-25 06:44
【總結(jié)】2015年高考立體幾何大題試卷1.【2015高考新課標(biāo)2,理19】如圖,長(zhǎng)方體中,,,,點(diǎn),分別在,上,.過(guò)點(diǎn),的平面與此長(zhǎng)方體的面相交,交線(xiàn)圍成一個(gè)正方形.DD1C1A1EFABCB1(1題圖)(Ⅰ)在圖中畫(huà)出這個(gè)正方形(不必說(shuō)出畫(huà)法和理由);(Ⅱ)求直線(xiàn)與平面所成角的正弦值.2.【2015江蘇高考,16】如圖,在直三棱柱
2025-04-17 00:05
【總結(jié)】23高中數(shù)學(xué)新夢(mèng)想教育中心授課老師;沈源立體幾何大題的解題技巧——綜合提升【命題分析】高考中立體幾何命題特點(diǎn):,將側(cè)重于垂直關(guān)系.“角”與“距離”的計(jì)算常在解答題中綜合出現(xiàn).、性質(zhì)多在選擇題,填空題出現(xiàn).、四棱柱、三棱錐的問(wèn)題,特別是與球有關(guān)的問(wèn)題將是
【總結(jié)】立體幾何空間直線(xiàn)解答題空間直線(xiàn)解答題1、在空間四邊形ABCD中,各邊長(zhǎng)和對(duì)角線(xiàn)長(zhǎng)均為a,點(diǎn)E、F分別是BD、AC的中點(diǎn),求異面直線(xiàn)AE和BF所成的角.2、如圖,空間四邊形ABCD中,AB=AD=2,BC=DC=1,AD和
2024-11-11 13:18
【總結(jié)】第一篇:立體幾何證明大題2 立體幾何證明大題 1.如圖,四面體ABCD中,AD^平面BCD,E、F分別為AD、AC的中點(diǎn),BC^CD.求證:(1)EF//平面BCD(2)BC^平面ACD. 2、...
2024-11-12 12:45
【總結(jié)】大成培訓(xùn)立體幾何強(qiáng)化訓(xùn)練,在四面體ABCD中,CB=CD,AD⊥BD,點(diǎn)E,F分別是AB,BD的中點(diǎn).求證:(Ⅰ)直線(xiàn)EF∥平面ACD;(Ⅱ)平面EFC⊥平面BCD.,在直三棱柱ABC-A1B1C1中,E、F分別是A1B、A1C的中點(diǎn),點(diǎn)D在B1C1上,A
2025-04-04 05:14
【總結(jié)】高考立體幾何大題及答案1.(2009全國(guó)卷Ⅰ文)如圖,四棱錐中,底面為矩形,底面,,,點(diǎn)在側(cè)棱上,。(I)證明:是側(cè)棱的中點(diǎn);求二面角的大小。2.(2009全國(guó)卷Ⅱ文)如圖,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點(diǎn),DE⊥平面BCC1(Ⅰ)證明:AB=AC(Ⅱ)設(shè)二面
2025-06-26 05:02
【總結(jié)】,四棱錐中,底面為矩形,底面,,,點(diǎn)在側(cè)棱上,。(I)證明:是側(cè)棱的中點(diǎn);求二面角的大小。,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點(diǎn),DE⊥平面BCC1(Ⅰ)證明:AB=AC(Ⅱ)設(shè)二面角A-BACBA1B1C1DED-C為60
2025-06-26 04:57
【總結(jié)】立體幾何大題訓(xùn)練(1)1、如圖,三棱柱ABC-A1B1C1的底面是邊長(zhǎng)為2的等邊三角形,AA1⊥底面ABC,點(diǎn)E,F(xiàn)分別是棱CC1,BB1上的點(diǎn),且EC=B1F=2FB.(1)證明:平面AEF⊥平面ACC1A1;(2)若AA1=3,求直線(xiàn)AB與平面AEF所成角的正弦值.2、如圖,在四棱錐中,平
2025-03-25 06:43