【總結(jié)】第四章隨機變量的數(shù)字特征1.甲、乙兩臺自動車床,生產(chǎn)同一種零件,生產(chǎn)1000件產(chǎn)品所出的次品數(shù)分別用x,h表示,經(jīng)過一段時間的考察,知x,h的分布律如下:x
2025-01-14 17:11
【總結(jié)】......隨機事件及其概率隨機事件習題1試說明隨機試驗應具有的三個特點.習題2將一枚均勻的硬幣拋兩次,事件A,B,C分別表示“第一次出現(xiàn)正面”,“兩次出現(xiàn)同一面”,“至少有一次出現(xiàn)正面”,試寫出樣本空間及事件
2025-06-24 20:55
【總結(jié)】《概率論與數(shù)理統(tǒng)計》習題課四一、填空題)3(),(~)1(22???XENX則,已知)2(9)(6)()(9)(6)()96()3(:2222?????????????????XEXEXDXEXEXXEXE由均值的性質(zhì)得解一、填空題)3(,),2,1(~),(~)2(??YXDY
2025-02-17 20:49
【總結(jié)】第二章習題解答1. 設與分別是隨機變量X與Y的分布函數(shù),為使是某個隨機變量的分布函數(shù),則的值可取為(A). A. B. C. D.2.解:因為隨機變量={這4個產(chǎn)品中的次品數(shù)}的所有可能的取值為:0,1,2,3,4.且;;;;.因此所求的分布律為:X01
2025-06-24 21:00
【總結(jié)】白淑敏崔紅衛(wèi)概率論與數(shù)理統(tǒng)計習1.試判斷下列試驗是否為隨機試驗:(1)在恒力的作用下一質(zhì)點作勻加速運動;(2)在5個同樣的球(標號1,2,3,4,5,)中,任意取一個,觀察所取球的標號;(3)在分析天平上稱量一小包白糖,并記錄稱量結(jié)果.解(1)不是隨機試驗,因為這樣的試驗只有唯一的結(jié)果.(2)是隨機試驗,因為取球可在相同條件下進行,每次取球有5個可能的結(jié)果:1
2025-08-05 08:01
【總結(jié)】......第二章隨機變量及其分布1、解:設公司賠付金額為,則X的可能值為;投保一年內(nèi)因意外死亡:20萬,投保一年內(nèi)因其他原因死亡:5萬,投保一年內(nèi)沒有死亡:0,=所以的分布律為:2050
2025-03-25 04:53
【總結(jié)】21《概率論與數(shù)理統(tǒng)計》1.將一枚均勻的硬幣拋兩次,事件分別表示“第一次出現(xiàn)正面”,“兩次出現(xiàn)同一面”,“至少有一次出現(xiàn)正面”。試寫出樣本空間及事件中的樣本點。解:(正,正),(正,反),(反,正),(反,反)(正,正),(正,反);(正,正),(反,反)(正,正),(正,反),(反,正)2.在擲兩顆骰子的試驗中,事件分別表示“點數(shù)之和為偶數(shù)”,“點數(shù)
2025-06-24 21:10
【總結(jié)】1.設隨機變量X的分布律為P{X=k}=aN,k=1,2,N,求常數(shù)a.解:由分布律的性質(zhì)k=1∞pk=1得P(X=1)+P(X=2)+…..+P(X=N)=1N*aN=1,即a=12.設隨機變量X只能取-1,0,1,2這4個值,且取這4個值相應的概率依次為12c,34c,58c,716c,求常數(shù)c.解:12c+34c+58c+716c=
2025-06-07 19:55
【總結(jié)】習題三,以X表示在三次中出現(xiàn)正面的次數(shù),.【解】X和Y的聯(lián)合分布律如表:XY0123100300、2只紅球、2只白球,在其中任取4只球,以X表示取到黑球的只數(shù),.【解】X和Y的聯(lián)合分布律如表:XY0123000102P(0黑,2紅,2
2025-06-24 20:46
【總結(jié)】概率論與數(shù)理統(tǒng)計習題第三章隨機向量一、填空題:1、設隨機變量(X,Y)具有概率密度則c=,。X01P1/21/22、設相互獨立的兩個隨機變量X和Y具有同一概率分布,且X的概率分布如表則隨機變量Z=min{X,Y}的概率分布為。3、設平面區(qū)域D由曲線y=及直線y=0,x=
2025-01-14 18:20
【總結(jié)】經(jīng)濟數(shù)學基礎課后答案(概率統(tǒng)計第三分冊)完整的答案完整的答案隱藏窗體頂端窗體底端習題一1. 寫出下列事件的樣本空間:(1)把一枚硬幣拋擲一次;(2)把一枚硬幣連續(xù)拋擲兩次;(3)擲一枚硬幣,直到首次出現(xiàn)正面為止;(4)一個庫房在某一個時刻的庫存量(假定最大容量為M).解(1)={正面,反面} △ {正,反}(2)
【總結(jié)】1概率論與數(shù)理統(tǒng)計復旦大學習題一1.見教材習題參考答案.A,B,C為三個事件,試用A,B,C(1)A發(fā)生,B,C都不發(fā)生;(2)A與B發(fā)生,C(3)A,B,C都
2025-01-09 14:49
【總結(jié)】習題一1.寫出下列隨機試驗的樣本空間及下列事件中的樣本點:(1)擲一顆骰子,記錄出現(xiàn)的點數(shù).‘出現(xiàn)奇數(shù)點’;(2)將一顆骰子擲兩次,記錄出現(xiàn)點數(shù).‘兩次點數(shù)之和為10’,‘第一次的點數(shù),比第二次的點數(shù)大2’;(3)一個口袋中有5只外形完全相同的球,編號分別為1,2,3,4,5;從中同時取出3只球,觀察其結(jié)果,‘球的最小號碼為1’;(
2025-06-27 16:04
【總結(jié)】習題二(A)三、解答題1.一顆骰子拋兩次,以X表示兩次中所得的最小點數(shù)(1)試求X的分布律;(2)寫出X的分布函數(shù).解:(1)X123456pi分析:這里的概率均為古典概型下的概率,所有可能性結(jié)果共36種,如果X=1,則表明兩次中至少有一點數(shù)為1,其余一個1至
2025-06-07 19:37
【總結(jié)】概率論與數(shù)理統(tǒng)計課后習題(1-4單元)第一單元1.解:(1)A1∪A2=“前兩次至少有一次擊中目標”;(2)2A=“第二次未擊中目標”;(3)A1A2A3=“前三次均擊中目標”;(4)A1?A2?A3=“前三次射擊中至少有一次擊中目標”;(5)A3-A2=“第三次擊中但第二次未擊中”;(6)A32A=
2025-01-09 01:12