【總結】課題:正弦定理、余弦定理綜合運用(二)?課題:正弦定理、余弦定理綜合運用(二)知識目標:1、三角形形狀的判斷依據;?2、利用正弦、余弦定理進行邊角互換。能力目標:1、進一步熟悉正、余弦定理;2、
2024-11-09 12:40
【總結】例1、如圖,,兩地之間隔著一個水塘,現選擇另一個點,測得,求,兩地之間的距離(精確到1)。ABC182,126,63oCAmCBmACB????ABm(見教材第14頁例2)ABCA
2024-11-30 12:35
【總結】正弦定理和余弦定理的應用知識點:1、正弦定理:.2、正弦定理的變形公式:①,,;②,,;③;④.3、三角形面積公式:.4、余弦定理:在中,有,,.5、余弦定理的推論:,,.6、設、、是的角、、的對邊,則:①若,則;②若,則;③若,則.典型例題:解:,由正弦定理得答:(略)1、如圖,設A,B兩點在河的兩岸,一測量者在A點的同側,在A所在的河岸邊選
2025-06-28 05:52
【總結】應用舉例解決有關測量距離的問題1、正弦定理:2、余弦定理:二、應用:一、定理內容:求三角形中的某些元素解三角形實例講解分析:在本題中直接給出了數學模型(三角形),要求A、B間距離,相當于在三角形中求某一邊長?想一想例1、如下圖,設A、B兩點在河的兩岸,要測量兩點之間的距離
2024-11-10 22:29
【總結】《正弦定理和余弦定理》典型例題透析類型一:正弦定理的應用:例1.已知在中,,,,解三角形.思路點撥:先將已知條件表示在示意圖形上(如圖),可以確定先用正弦定理求出邊,然后用三角形內角和求出角,最后用正弦定理求出邊.解析:,∴,∴,又,∴.總結升華:1.正弦定理可以用于解決已知兩角和一邊求另兩邊和一角的問題;2.數形結合將已知條件表示在示
2025-03-25 04:59
【總結】§ 正弦定理、余弦定理應用舉例在三角形的6個元素中要已知三個(除三角外)才能求解,常見類型及其解法如表所示.已知條件應用定理一般解法一邊和兩角(如a,B,C)正弦定理由A+B+C=180°,求角A;由正弦定理求出b與c.在有解時只有一解兩邊和夾角(如a,b,C)余弦定理正弦定理由余弦定理求第三邊c
2025-06-28 04:30
【總結】第一篇:《正弦定理和余弦定理》教學反思 《正弦定理、余弦定理》教學反思 我對教學所持的觀念是:數學學習的主要目的是:“在掌握知識的同時,領悟由其內容反映出來的數學思想方法,要在思維能力、情感態(tài)度與...
2025-09-24 14:50
【總結】第一篇:正弦定理與余弦定理的證明 在△ABC中,角A、B、C所對的邊分別為a、b、c,則有 a/sinA=b/sinB=c/sinC=2R(R為三角形外接圓的半徑) 正弦定理(Sinetheor...
2025-09-27 06:34
【總結】正弦定理、余弦定理的應用(2)例1、自動卸貨汽車的車箱采用液壓機構。設計時需要計算油泵頂杠BC的長度(如圖所示)。已知車箱的最大仰角為,油泵頂點B與車箱支點A之間的距離為,AB與水平線之間的夾角為,AC長為,計算BC的長(保留三個有效數字)。?60'206?
2025-07-19 20:47
【總結】尋找最適合自己的學習方法正弦定理和余弦定理1.正弦定理:===2R,其中R是三角形外接圓的半徑.由正弦定理可以變形:(1)a∶b∶c=sin_A∶sin_B∶sin_C;(2)a=2Rsin_A,b=2Rsin_B,c=2Rsin_C;(3)sinA=,sinB=,sinC=等形式,解決不同的三角形問題.2
2025-06-24 03:33
【總結】正弦定理余弦定理復習題1基本運算類1、中,則等于ABC?45,60,1,Ba????b2、在△ABC中,已知,B=,C=,則等于80753、已知中,分別是角的對邊,,則=cb、CBA、?60,3,2??Bb
【總結】高考正弦定理和余弦定理練習題及答案一、選擇題1.已知△ABC中,a=c=2,A=30°,則b=( )A. B.2C.3 D.+1答案:B解析:∵a=c=2,∴A=C=30°,∴B=120°.由余弦定理可得b=2.2.△ABC中,a=,b=,sinB=,則符合條件的三角形有( )
2025-06-26 04:58
【總結】溫馨提示:此題庫為Word版,請按住Ctrl,滑動鼠標滾軸,調節(jié)合適的觀看比例,關閉Word文檔返回原板塊??键c16正弦定理和余弦定理一、選擇題1.(2011·浙江高考文科·T5)在中,,則()(A)-(B)(C)-1(D)1【思路點撥】用正弦定理統(tǒng)一到角
2025-04-17 04:22
【總結】§正弦定理和余弦定理要點梳理:,其中R是三角形外接圓的半徑.由正弦定理可以變形為:(1)a∶b∶c=sinA∶sinB∶sinC;(2)a=2RsinA,b=2RsinB,;(3)等
2025-07-25 10:59
【總結】第一篇:正弦定理和余弦定理練習題 【正弦定理、余弦定理模擬試題】 : ,a=23,b=22,B=45°,則A為() °或120°°°或150°° sinAcosB ,若=,則DB=() ...
2025-09-27 07:29