【總結(jié)】極坐標(biāo)系與參數(shù)方程高考題練習(xí)2014年一.選擇題1.(2014北京)曲線(為參數(shù))的對稱中心(B)在直線上在直線上在直線上在直線上2.(2014安徽)以平面直角坐標(biāo)系的原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位。已知直線的參數(shù)方程是(為參數(shù)),圓的極坐標(biāo)方程是,則直線被圓截得的弦長
2025-06-24 02:49
【總結(jié)】極坐標(biāo)、參數(shù)方程題型總結(jié)一、大綱要求:1.了解坐標(biāo)系的作用。了解在平面直角坐標(biāo)系伸縮變換作用下平面圖形的變化情況。,會在極坐標(biāo)系中用極坐標(biāo)刻畫點的位置,能進行極坐標(biāo)和直角坐標(biāo)的互化。3.能在極坐標(biāo)系中給出簡單圖形的方程。,了解參數(shù)的意義。,圓和圓錐曲線的參數(shù)方程。二基礎(chǔ)知識:1.把直角坐標(biāo)系的原點作為極點,x軸正半軸作為極軸,且在兩坐標(biāo)系中取相同的長度單位.如圖,
2025-03-25 04:36
【總結(jié)】選校網(wǎng)高考頻道專業(yè)大全歷年分?jǐn)?shù)線上萬張大學(xué)圖片大學(xué)視頻院校庫數(shù)學(xué)選修4-4坐標(biāo)系與參數(shù)方程[基礎(chǔ)訓(xùn)練A組]一、選擇題1.若直線的參數(shù)方程為,則直線的斜率為()A.B.C.D.2.下列在曲線上的點是()A.B.C.D.3.將參數(shù)方程化為普通方程為()A.B.C.D
【總結(jié)】(一)極坐標(biāo)中的運算1.在直角坐標(biāo)系中,直線:=2,圓:,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.(Ⅰ)求,的極坐標(biāo)方程;(Ⅱ)若直線的極坐標(biāo)方程為,設(shè)與的交點為,,求的面積.2.【2015高考新課標(biāo)2,理23】選修4-4:坐標(biāo)系與參數(shù)方程在直角坐標(biāo)系中,曲線(為參數(shù),),其中,在以為極點,軸正半軸為極軸的極坐標(biāo)系中,曲線,曲線.(Ⅰ).求與交點的直角坐
2025-04-17 13:17
【總結(jié)】高三極坐標(biāo)與參數(shù)方程綜合練習(xí)題1.(2016·全國Ⅱ,23)在直角坐標(biāo)系xOy中,圓C的方程為(x+6)2+y2=25.(1)以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,求C的極坐標(biāo)方程;(2)直線l的參數(shù)方程是(t為參數(shù)),l與C交于A、B兩點,|AB|=,求l的斜率.2.(2015·全國Ⅰ,23)在直角坐標(biāo)系
2025-03-26 05:39
【總結(jié)】高中數(shù)學(xué)選修4-4經(jīng)典綜合試題一、選擇題:本大題共12小題,每小題5分,共60分,在每個小題給出的四個選項中,只有一項是符合題目要求的.1.曲線與坐標(biāo)軸的交點是().A.B.C.D.2.把方程化為以參數(shù)的參數(shù)方程是().A.B.C.D.3.若直線的參數(shù)方程為,則直線的斜率為().A.
2025-06-24 02:45
【總結(jié)】極坐標(biāo)與參數(shù)方程一、極坐標(biāo)知識點(1)極坐標(biāo)系如圖所示,在平面內(nèi)取一個定點,叫做極點,自極點引一條射線,叫做極軸;再選定一個長度單位,一個角度單位(通常取弧度)及其正方向(通常取逆時針方向),這樣就建立了一個極坐標(biāo)系.注:極坐標(biāo)系以角這一平面圖形為幾何背景,而平面直角坐標(biāo)系以互相垂直的兩條數(shù)軸為幾何背景;平面直角坐標(biāo)系內(nèi)的點與坐標(biāo)能建立一一對應(yīng)的關(guān)系,.(2)極坐標(biāo)
2025-06-27 03:31
【總結(jié)】極坐標(biāo)與參數(shù)方程例題示范(分題型)極坐標(biāo)與參數(shù)方程是選修內(nèi)容的必考題型,這里按照課本及高考考試說明,歸納總結(jié)為四類題型。題型一。極坐標(biāo)與直角坐標(biāo)的互化。互化原理(三角函數(shù)定義)、數(shù)形結(jié)合。1.在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系,并在兩種坐標(biāo)系中取相同的長度單位,曲線的極坐標(biāo)方程為.(1)把曲線的極坐標(biāo)方程化為普通方程;(2
2025-03-25 04:37
【總結(jié)】一、坐標(biāo)系1、數(shù)軸它使直線上任一點P都可以由惟一的實數(shù)x確定2、平面直角坐標(biāo)系在平面上,當(dāng)取定兩條互相垂直的直線的交點為原點,并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標(biāo)系。它使平面上任一點P都可以由惟一的實數(shù)對(x,y)確定。3、空間直角坐標(biāo)系在空間中,選擇兩兩垂直且交于一點的三條直線,當(dāng)取定這三條直線的交點為原點,并確定了度量單位和這三條直線
2025-06-24 02:37
【總結(jié)】......極坐標(biāo)參數(shù)方程1、已知在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(θ為參數(shù)),直線l經(jīng)過定點,傾斜角為(1)寫出直線l的參數(shù)方程和曲線C的標(biāo)準(zhǔn)方程;(2)設(shè)直線l與曲線C相交于A,B兩點,求的值。
【總結(jié)】極坐標(biāo)與參數(shù)方程綜合運用題型(一)【題型分析】題型一圓上的點到直線距離的最值【例1】已知曲線C1的參數(shù)方程為曲線C2的極坐標(biāo)方程為ρ=2cos(θ﹣),以極點為坐標(biāo)原點,極軸為x軸正半軸建立平面直角坐標(biāo)系.(1)求曲線C2的直角坐標(biāo)方程;(2)求曲線C2上的動點M到直線C1的距離的最大值.解:(Ⅰ)即ρ2=2(ρcosθ+ρsinθ),∴x2+y2﹣2x﹣2y=0
【總結(jié)】極坐標(biāo)與參數(shù)方程基本知識點一、極坐標(biāo)知識點1.伸縮變換:設(shè)點是平面直角坐標(biāo)系中的任意一點,在變換的作用下,點對應(yīng)到點,稱為平面直角坐標(biāo)系中的坐標(biāo)伸縮變換,簡稱伸縮變換。:在平面內(nèi)取一個定點O,從O引一條射線Ox,選定一個單位長度以及計算角度的正方向(通常取逆時針方向為正方向),這樣就建立了一個極坐標(biāo)系,O點叫做極點,射線Ox叫做極軸.①極點;②極軸;③長度單位;④角度單位和它
2025-06-23 16:07
【總結(jié)】1.平面直角坐標(biāo)系中的坐標(biāo)伸縮變換設(shè)點P(x,y)是平面直角坐標(biāo)系中的任意一點,在變換的作用下,點P(x,y)對應(yīng)到點,稱為平面直角坐標(biāo)系中的坐標(biāo)伸縮變換,簡稱伸縮變換.(1)極坐標(biāo)系如圖所示,在平面內(nèi)取一個定點,叫做極點,自極點引一條射線,叫做極軸;再選定一個長度單位,一個角度單位(通常取弧度)及其正方向(通常取
2024-10-18 16:03
【總結(jié)】1.平面直角坐標(biāo)系中的坐標(biāo)伸縮變換設(shè)點P(x,y)是平面直角坐標(biāo)系中的任意一點,在變換的作用下,點P(x,y)對應(yīng)到點,稱為平面直角坐標(biāo)系中的坐標(biāo)伸縮變換,簡稱伸縮變換.(1)極坐標(biāo)系如圖所示,在平面內(nèi)取一個定點,叫做極點,自極點引一條射線,叫做極軸;再選定一個長度單位,一個角度單位(通常取弧度)及其正方向(通常取逆時針方向),這樣就建立了一個極坐標(biāo)系.注:極坐標(biāo)系以角這一平
2025-06-23 16:26
【總結(jié)】......極坐標(biāo)與參數(shù)方程的主要知識點1、極坐標(biāo)與直角坐標(biāo)系的互化設(shè)M為平面上的一點,它的直角坐標(biāo)為,極坐標(biāo),由下圖可知下面的關(guān)系式成立:2、直線的參數(shù)方程:
2025-06-23 16:15