【總結(jié)】勾股定理經(jīng)典例題類型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路點(diǎn)撥:寫(xiě)解的過(guò)程中,一定要先寫(xiě)上在哪個(gè)直角三角形中,注意勾股定理的變形使用。舉一反三【變式】:如圖∠B=∠ACD=90
2025-06-23 05:28
【總結(jié)】4勾股定理及其逆定理復(fù)習(xí)典型例題1.勾股定理:直角三角形兩直角邊a、b的平方和等于斜邊c的平方。(即:a2+b2=c2)勾股定理的逆定理:如果三角形的三邊長(zhǎng):a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形。2.勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系區(qū)別:勾股定理是直角三角形的性質(zhì)定理,而其逆定理是判定定理聯(lián)系:勾股定理與其逆定理的題設(shè)和結(jié)論正好相反
2025-04-16 23:53
【總結(jié)】△ABC的周長(zhǎng)為,其中斜邊,求這個(gè)三角形的面積。10.如果把勾股定理的邊的平方理解為正方形的面積,那么從面積的角度來(lái)說(shuō),勾股定理可以推廣.(1)如圖,以Rt△ABC的三邊長(zhǎng)為邊作三個(gè)等邊三角形,則這三個(gè)等邊三角形的面積、、之間有何關(guān)系?并說(shuō)明理由。(2)如圖,以Rt△ABC的三邊長(zhǎng)為直徑作三個(gè)半圓,則這三個(gè)半圓的面積、、之間有何關(guān)系?(3)如果將上圖中的斜邊上的半圓沿斜邊翻折1
2025-03-24 12:59
【總結(jié)】《勾股定理》典型例題折疊問(wèn)題1、如圖,有一張直角三角形紙片,兩直角邊AC=6,BC=8,將△ABC折疊,使點(diǎn)B與點(diǎn)A重合,折痕為DE,則CD等于()A.B.C.D.
2025-03-24 13:01
【總結(jié)】勾股定理復(fù)習(xí)一、知識(shí)要點(diǎn):1、勾股定理勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。也就是說(shuō):如果直角三角形的兩直角邊為a、b,斜邊為c,那么a2+b2=c2。公式的變形:a2=c2-b2,b2=c2-a2。勾股定理在西方叫畢達(dá)哥拉斯定理,也叫百牛定理。它是直角三角形的一條重要性質(zhì),揭示的是三邊之間的數(shù)量關(guān)系。它的主要作用是已知直角三角形的兩邊求第三邊
2025-06-22 04:05
【總結(jié)】折疊問(wèn)題與勾股定理例題總結(jié)1.如圖,在矩形ABCD中,AB=6,BC=8。將矩形ABCD沿CE折疊后,使點(diǎn)D恰好落在對(duì)角線AC上的點(diǎn)F處。(1)求EF的長(zhǎng);(2)求梯形ABCE的面積。2.如圖所示,在?ABC中,AB=20,AC=12,BC=16,把?ABC折疊,使AB落在直線AC上,求重疊部分(陰影部分)的面積.3
2025-03-25 02:27
【總結(jié)】勾股定理典型例題及專項(xiàng)訓(xùn)練新宇中學(xué)八年級(jí)數(shù)學(xué)?1.如圖,公園內(nèi)有一塊長(zhǎng)方形花圃,有極少數(shù)人為了避開(kāi)拐角走“捷徑”,在花圃內(nèi)走出了一條“路”.他們僅僅少走了步路(假設(shè)3步為1米),卻踩傷了花草.超越自我
2025-05-06 12:12
【總結(jié)】第17章勾股定理點(diǎn)擊一:勾股定理勾股定理:如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2+b2=c2.即直角三角形兩直角的平方和等于斜邊的平方.因此,在運(yùn)用勾股定理計(jì)算三角形的邊長(zhǎng)時(shí),要注意如下三點(diǎn):(1)注意勾股定理的使用條件:只對(duì)直角三角形適用,而不適用于銳角三角形和鈍角三角形;(2)注意分清斜邊和直角邊,避免盲目代入公式致錯(cuò);
2025-03-24 13:00
【總結(jié)】勾股定理1.勾股定理是把形的特征(三角形中有一個(gè)角是直角),轉(zhuǎn)化為數(shù)量關(guān)系(a2+b2=c2),不僅可以解決一些計(jì)算問(wèn)題,而且通過(guò)數(shù)的計(jì)算或式的變形來(lái)證明一些幾何問(wèn)題,特別是證明線段間的一些復(fù)雜的等量關(guān)系.在幾何問(wèn)題中為了使用勾股定理,常作高(或垂線段)等輔助線構(gòu)造直角三角形.2.勾股定理的逆定理是把數(shù)的特征(a2+b2=c2)轉(zhuǎn)化為形的特征(三角形中的一個(gè)角是直角),可以有機(jī)地與式
2025-06-22 07:28
【總結(jié)】.....《勾股定理》一、教學(xué)目標(biāo)1、知識(shí)與技能:理解勾股定理,并能運(yùn)用勾股定理解決簡(jiǎn)單的問(wèn)題。2、過(guò)程與方法:經(jīng)歷勾股定理的探索過(guò)程,發(fā)展合情推理能力,體會(huì)數(shù)形結(jié)合思想、轉(zhuǎn)化思想和從特殊到一般的數(shù)學(xué)思想。3、情感態(tài)度價(jià)值觀:通
2025-06-24 20:34
【總結(jié)】勾股定理復(fù)習(xí)考點(diǎn)(全)-經(jīng)典一、知識(shí)要點(diǎn):1、勾股定理勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。也就是說(shuō):如果直角三角形的兩直角邊為a、b,斜邊為c,那么a2+b2=c2。公式的變形:a2=c2-b2,b2=c2-a2。
2025-04-16 23:55
【總結(jié)】典型例題知識(shí)點(diǎn)一、直接應(yīng)用勾股定理或勾股定理逆定理例1:如圖,在單位正方形組成的網(wǎng)格圖中標(biāo)有AB、CD、EF、GH四條線段,其中能構(gòu)成一個(gè)直角三角形三邊的線段是() A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF勾股定理說(shuō)到底是一個(gè)等式,而含有未知數(shù)的等式就是方程。所以,在利用勾股定理求線段的長(zhǎng)時(shí)
2025-06-22 04:18
【總結(jié)】勾股定理常考習(xí)題勾股定理的直接應(yīng)用:1、在Rt△ABC中,∠C=90°,a=12,b=16,則c的長(zhǎng)為()A:26B:18C:20D:212、在平面直角坐標(biāo)系中,已知點(diǎn)P的坐標(biāo)是(3,4),則OP的長(zhǎng)為()A:3B:4
【總結(jié)】與直角有關(guān)的折疊問(wèn)題(一),將矩形ABCD的四個(gè)角向內(nèi)折起,恰好拼成一個(gè)無(wú)縫隙無(wú)重疊的四邊形EFGH,若EH=9厘米,EF=12厘米,則邊AD的長(zhǎng)是(????)A.12厘米B.15厘米C.20厘米D.21厘米2.?如圖,在矩形ABCD中,AB=4,BC=8,將矩形ABCD沿EF折
2025-03-24 12:58
【總結(jié)】勾股定理經(jīng)典復(fù)習(xí)題一、基礎(chǔ)達(dá)標(biāo):1.下列說(shuō)法正確的是( ?。゛、b、c是△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,則a2+b2=c2;a、b、c是Rt△ABC的三邊,,則a2+b2=c2;a、b、c是Rt△ABC的三邊,,則a2+b2=c2.2.△ABC的三條邊長(zhǎng)分別是、、,則下列各式成立的是( ?。〢. B.
2025-06-22 07:15