【總結(jié)】文科立體幾何線面角二面角專題學(xué)校:___________姓名:___________班級(jí):___________考號(hào):___________一、解答題1.如圖,在三棱錐P?ABC中,AB=BC=22,PA=PB=PC=AC=4,O為AC的中點(diǎn).(1)證明:PO⊥平面ABC;(2)若點(diǎn)M在棱BC上,且二面角M?PA?C為30°,求PC與平面PAM所成角的正
2025-06-25 16:28
【總結(jié)】二面角從空間一直線出發(fā)的兩個(gè)半一、二面角的定義二、二面角的平面角角的平面角一個(gè)平面垂直于二面角的棱,并與兩半平面分別相交于射線PA、PB垂足為P,則∠APB叫做二面ABPγβαιαβι平面所組成的圖形叫做二面角
2024-11-06 15:15
【總結(jié)】二面角(2)一、復(fù)習(xí)鞏固1.二面角的定義?2.什么是二面角的平面角?請(qǐng)看3.什么是直二面角?二、研究與討論1.二面角的平面角的頂點(diǎn)是二面角棱上的_____一點(diǎn).2.二面角的平面角的兩邊分別在二面角的_______內(nèi).3.二面角的平面角的
2024-11-06 17:19
【總結(jié)】直線上的一點(diǎn)將直線分割成兩部分,每一部分都叫做射線.射線射線平面內(nèi)的一條直線,把這個(gè)平面分成兩部分,每一部分都叫做半平面。思考:平面上的一條直線將平面分割成兩部分,每一部分叫什么名稱?αl從一條直線出發(fā)的兩個(gè)半平面所組成的空間圖形稱為什么?在平面幾何中“角”是怎樣定義的?答:從平面內(nèi)一點(diǎn)出發(fā)的兩條
2025-08-05 00:06
【總結(jié)】高中立體幾何中二面角的平面角的作法一、二面角的平面角的定義如圖(1),α、β是由l出發(fā)的兩個(gè)平面,O是l上任意一點(diǎn)OC∈α,且OC⊥l;CD∈β,且OD⊥l。這就是二面角的平面角的環(huán)境背景,即∠COD是二面角α—l—β的平面角,從中不難得到下列特征: ?、瘛⑦^(guò)棱上任意一點(diǎn),其平面角是唯一的;Ⅱ、其平面角所在平面與其兩個(gè)半平面均垂直;另外,如果在O
2025-06-07 23:17
【總結(jié)】βabABCD設(shè)異面直線a、b的夾角為θcosθ=??AB,CDcos||=AB·CD·AB||CD||θ=??AB,CD或θ=π-?
2025-05-14 22:58
【總結(jié)】立體幾何綜合訓(xùn)練(45)二面角二面角問(wèn)題因其需要充分運(yùn)用立體幾何第一章的線線、線面、面面關(guān)系,具有綜合性強(qiáng),靈活性大的特點(diǎn),因此,一直成為高考、會(huì)考的熱點(diǎn)。求解二面角問(wèn)題一般可分為直接法和間接法二大類。一、直接法直接法就是根據(jù)已知條件,首先作出二面角的平面角,再求平面角大小的方法。求作二面角平面角的方法主要有:lab①利用定義即在二面角-l-的
2025-09-25 17:11
【總結(jié)】 知識(shí)點(diǎn):二面角的求法一、思想方法求二面角的大小,是立體幾何計(jì)算與運(yùn)用中的一個(gè)重點(diǎn)和難點(diǎn).直接法的核心是作(或找)出二面角的平面角,間接法可利用投影、異面直線、空間向量等。常用的方法有以下幾種:方法一(定義法)即從二面角棱上一點(diǎn)在兩個(gè)面內(nèi)分別引棱的垂線如圖1。方法二(三垂線法)在二面角的一
2025-03-25 06:41
【總結(jié)】1.如圖,四棱錐中,底面為矩形,底面,,點(diǎn)M在側(cè)棱上,=60°(I)證明:M在側(cè)棱的中點(diǎn)(II)求二面角的大小。2.如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,,E,F(xiàn)分別是BC,PC的中點(diǎn).(Ⅰ)證明:AE⊥PD;(Ⅱ)若H為PD上的動(dòng)點(diǎn),EH與平面PAD所成最大角的正切值為,求二面角E—AF—C的余弦值.E
2025-03-25 06:42
【總結(jié)】用向量法求二面角例1:在三棱柱ABO—A1B1O1中,平面OBB1O1⊥平面OAB,∠O1OB=600,∠BOA=900,OB=OO1=2,AO=.求3(1)二面角O—AB—O1的大小AOBA1O1B1xyz42arccos例2:已知四棱錐P—ABC
2024-11-09 08:07
【總結(jié)】高二數(shù)學(xué)課件:制作:余干二中章華鋒二面角和面面垂直二面角和面面垂直教學(xué)目標(biāo):掌握判定定理,并會(huì)應(yīng)用培養(yǎng)空間想象能力,推理能力教學(xué)難點(diǎn):判定定理及其綜合應(yīng)用1、問(wèn)題:一條直線可以把一個(gè)平面分成多少部分?每一部分都叫做半平面2部分2、觀察一下從一條直線出發(fā)的兩個(gè)半平面所組成的的圖形叫二面角.
2024-11-09 01:26
【總結(jié)】第一篇:線面垂直面面垂直及二面角專題練習(xí) 線面垂直專題練習(xí) 一、定理填空: 如果一條直線和,線面垂直判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,:如果兩條平行線中的一條于一個(gè)平面...
2024-11-09 12:06
【總結(jié)】平面法向量在立體幾何中的應(yīng)用——利用法向量求二面角(一)平面的法向量的定義:n如果n??,那么向量n叫做平面?的法向量?1、利用平面法向量求直線與平面所成的角:直線與平面所成的角等于平面的法向量所在的直線與已知直線的夾角的余角。(二
2024-11-24 14:09
【總結(jié)】立體幾何專題之二面角問(wèn)題北京大學(xué)光華管理學(xué)院何洋立體幾何高考情況簡(jiǎn)述2022年2022年2022年文科理科文科理科文科理科選擇題222222填空題111110解答題111111二面角問(wèn)題高考情況簡(jiǎn)述?除2022年北京
2025-07-20 07:01
【總結(jié)】??????復(fù)習(xí)回顧"角"是怎樣定義的?從一點(diǎn)出發(fā)的兩條射線所組成的圖形叫做角。或:一條射線繞其端點(diǎn)旋轉(zhuǎn)而成的圖形叫做角。,"異面直線所成的角"是怎樣定義的?直線a、b是異面直線,經(jīng)過(guò)空間任意一點(diǎn)O,分別引直線a'//a,b'//b,我們把相
2025-08-05 18:18