【總結(jié)】calculus§定積分基本積分方法301sinsinxxdx???例:求32sinsinsinsinsincosxxxxxx????解:由于被積函數(shù)(1)一、直接積分法cossin,02cossin,2xxxxxx
2025-01-19 21:34
【總結(jié)】第五講微積分運(yùn)算求極限運(yùn)算?Mathematica提供了計(jì)算函數(shù)極限的命令的一般形式為:Limit[函數(shù),極限過(guò)程]?具體命令形式為命令形式1:Limit[f,x-x0]功能:計(jì)算,其中f是x的函數(shù)。命令形式2:Limit[f,x-x0,Direction-1]
2025-08-04 08:13
【總結(jié)】旋轉(zhuǎn)體就是由一個(gè)平面圖形繞這平面內(nèi)一條直線旋轉(zhuǎn)一周而成的立體.這直線叫做旋轉(zhuǎn)軸.圓柱圓錐圓臺(tái)二、體積1.旋轉(zhuǎn)體的體積一般地,如果旋轉(zhuǎn)體是由連續(xù)曲線)(xfy?、直線ax?、bx?及x軸所圍成的曲邊梯形繞x軸旋轉(zhuǎn)一周而成的立體,體積為多少?取積分變量為x,],[bax?在],[
2025-04-21 03:33
【總結(jié)】微積分Ⅰ1第九章重積分§二重積分的計(jì)算一、利用直角坐標(biāo)計(jì)算二重積分二、利用極坐標(biāo)計(jì)算二重積分三、小結(jié)微積分Ⅰ2第九章重積分一、利用直角坐標(biāo)計(jì)算二重積分bxa??),()(21xyx????)(2xy??abD)(1xy??Dba)(2x
【總結(jié)】第四章數(shù)值微積分?Newton-Cotes型求積公式?復(fù)化求積公式?Gauss型求積公式?數(shù)值微分§1.引言求函數(shù)在給定區(qū)間上的定積分,在高等數(shù)學(xué)教程中已給出了許多有效的方法。但在實(shí)際問(wèn)題中,往往僅給出函數(shù)在一些離散點(diǎn)的值,它的解析表達(dá)式?jīng)]有明顯的給出;或者,雖然給出解析
2024-10-17 11:50
【總結(jié)】第七章無(wú)窮級(jí)數(shù)微積分返回下頁(yè)上頁(yè)第七章無(wú)窮級(jí)數(shù)§無(wú)窮級(jí)數(shù)的概念§7.2無(wú)窮級(jí)數(shù)的基本性質(zhì)§正項(xiàng)級(jí)數(shù)§任意項(xiàng)級(jí)數(shù),絕對(duì)收斂§冪級(jí)數(shù)§泰勒公式與泰勒級(jí)數(shù)§
2025-01-20 05:33
【總結(jié)】《微積分I》綜合練習(xí)(一)一、單項(xiàng)選擇題1、設(shè)在定義域內(nèi)為( ?。.無(wú)界函數(shù);B.偶函數(shù); C.單調(diào)函數(shù); D.周期函數(shù).2、已知,則( ) A、;B、;C、;D、3.若,則k=( )A、1;B、8;C、2; D、0.4、設(shè),則dy=()A、;
2025-08-21 15:17
【總結(jié)】問(wèn)題???dxxex解決思路利用兩個(gè)函數(shù)乘積的求導(dǎo)法則.設(shè)函數(shù))(xuu?和)(xvv?具有連續(xù)導(dǎo)數(shù),??,vuvuuv???????,vuuvvu?????,dxvuuvdxvu??????.duvuvudv????分部積分公式第三節(jié)分部積分法容易計(jì)算.例1求積分.
2025-07-22 11:11
【總結(jié)】第二講微積分基本公式?內(nèi)容提要1.變上限的定積分;-萊布尼茲公式。?教學(xué)要求;-萊布尼茲公式。?21)(TTdttv)()(12TsTs?一、變上限的定積分).()()(1221TsTsdttvTT????).()(tvts??其中一般地,若?
2025-05-15 01:35
【總結(jié)】?xxd2cosCx?2sin解決方法將積分變量換成令xt2???xxd2costtdcos21??Ct??sin21Cx??2sin21????x2sinx2cos????xxdcosCx?sinx2cos2.2x因?yàn)?xd)d(221x
2025-08-05 07:16
【總結(jié)】寄語(yǔ)也不屬于有錢人,而是屬于有心人.這個(gè)世界,不屬于有權(quán)人,第一節(jié)、定積分概念第三節(jié)、可積條件本章內(nèi)容:第二節(jié)、牛頓-萊布尼茲公式第四節(jié)、定積分的性質(zhì)第五節(jié)、微積分學(xué)基本定理-定積分計(jì)算第九章定積分*第六節(jié)、可積性理論補(bǔ)敘二、定積分的換元
2024-12-08 00:45
【總結(jié)】殘量?離散的最佳逼近問(wèn)題問(wèn)題的提法:ix()ifx2x1mx?mx1x1()fx2()fx1()mfx?()mfx已知在的函數(shù)表()fx[,]ab??0()njjx??是區(qū)間上的一個(gè)線性無(wú)關(guān)函數(shù)系[,]ab尋求函數(shù)0()()njj
2025-03-21 22:16
【總結(jié)】特點(diǎn):)(0xf?)(0xf??第七節(jié)泰勒公式一、泰勒公式的建立)(xfxy)(xfy?o))(()(000xxxfxf????以直代曲0x)(1xp在微分應(yīng)用中已知近似公式:需要解決的問(wèn)題如何提高精度?如何估計(jì)誤差?xx的一次多項(xiàng)式
2025-08-01 16:25
【總結(jié)】1微積分基本公式問(wèn)題的提出積分上限函數(shù)及其導(dǎo)數(shù)牛頓—萊布尼茨公式小結(jié)思考題作業(yè)(v(t)和s(t)的關(guān)系)★☆☆fundamentalformulaofcalculus第4章定積分與不定積分2通過(guò)定積分的物理意義,例變速直線運(yùn)動(dòng)中路
2025-02-21 10:32
【總結(jié)】第一節(jié)數(shù)列極限的定義和性質(zhì)一、數(shù)列極限的定義定義:依次排列的一列數(shù)??,,,,21nxxx稱為無(wú)窮數(shù)列,簡(jiǎn)稱數(shù)列,記為}{nx.其中的每個(gè)數(shù)稱為數(shù)列的項(xiàng),nx稱為通項(xiàng)(一般項(xiàng)).例如;,2,,8,4,2??n;,21,,81,41,21??n}2{
2025-01-19 08:23