【正文】
謝值此論文完成之際,謹(jǐn)向所有曾給予我?guī)椭椭笇?dǎo)的老師、同學(xué)和朋友們致以衷心的感謝!本論文的構(gòu)思、規(guī)劃設(shè)計(jì)、撰寫得到了王宏偉老師的悉心指導(dǎo),在論文設(shè)計(jì)時(shí)給予熱心的指導(dǎo)與幫助,他廣博的學(xué)術(shù)知識(shí)、敏銳的學(xué)術(shù)洞察力、認(rèn)真的工作態(tài)度和嚴(yán)謹(jǐn)?shù)闹螌W(xué)作風(fēng)、平易近人的為人風(fēng)格給予我深刻的印象,使我受益匪淺。在此向王宏偉老師表示誠(chéng)摯的謝意!另外我要感謝四年來所有人教過我的老師們,他們諄諄教導(dǎo)使我掌握了基本的專業(yè)知識(shí),學(xué)會(huì)了基本的思考方式,為本文的撰寫打下了堅(jiān)實(shí)的理論基礎(chǔ),并為以后的繼續(xù)學(xué)習(xí)和工作做了良好的鋪墊。衷心感謝王老師以及大學(xué)期間對(duì)我有過幫助的老師,祝福全體老師身體健康,工作順利。參考資料[1] Jun Xie, Xinying Xu, Keming Xie. Modeling and Simulation of the Inverted Pendulum Based on Granular Hybrid System[C]. Control and Decision Conference,2008:37953799.[2] , , . On Stabilization of Rotational Modes of an Inverted Pendulum[J].Decision and Control,2000,5:50475052.[3] 宋立博,李勁松,費(fèi)燕瓊. 運(yùn)動(dòng)控制系統(tǒng)原理結(jié)構(gòu)與設(shè)計(jì),上??茖W(xué)技術(shù)文獻(xiàn)出版社[M],2009.[4] , , , . Pid and Interval Type2 Fuzzy Logic Control of Double Inverted Pendulum System[J]. Computer and Automation Engineering(ICCAE),2010,1:117121.[5] 張葛祥,李眾立,畢效輝. 倒立擺與自動(dòng)控制技術(shù)研究[J]. 西南工學(xué)院學(xué)報(bào),2001,16(3):1213.[6] 黃宏格. 直線倒立擺機(jī)理模型及控制性能研究[D].中南大學(xué),2008.[7] , , , . Speed gradient control and Passivity of nonlinear oscillators[C]. Proc. Of IFAC symposium on Control of Nonlinear Systems, Lake Tahoe. 1995:655659.[8] , , , . Robust swingup control of inverted pendulum[C]. Proc. Of the American Control Conference, Seattle, Washington. 1995:290294.[9] 張明廉,郝健康,1995,16(6):654661.[10] 任章,[J].控制與決策,1995,10(4):373376.[11] 翁正新,張鐘俊,∞狀態(tài)反饋控制[J].上海交通大學(xué)學(xué)報(bào),1996,30(4):119120.[12] 劉妹琴,廖曉聽,[J].控制理論與應(yīng)用,2000,17(4):593600.[13] 單波,徐燕,[J].華北電力大學(xué)學(xué)報(bào),2001,28(2):4651.[14] [D].湖北工業(yè)大學(xué),2008:24.[15] [D].哈爾濱工程大學(xué),2007.[16] [D].合肥工業(yè)大學(xué),2008.[17] 孫靈芳,孔輝,劉長(zhǎng)國(guó),[J].機(jī)床與液壓,2008,36(7):306313.[18] 王海英,袁麗英,吳勃. 控制系統(tǒng)的MATLAB仿真與設(shè)計(jì)[M].高等教育出版社, 2009.[19] 黨宏社. 控制系統(tǒng)仿真[M].西安電子科技大學(xué)出版社, 2008.[20] 羅建軍,楊琦. MATLAB教程[M].電子工業(yè)出版社,2005.[21] 張志勇,楊祖櫻. MATLAB教程[M].北京航空航天大學(xué)出版社,2006.[22] , Jinshiuh , Tzuen Wuu Hsieh and . Design of a Fuzzy Controller With Fuzzy SwingUp and Parallel Distributed Pole Assignment Schemes for an Inverted Pendulum and Cart System[J].Control Systems Technology,2008,16(6):12771288.[23] 席愛民. 模糊控制技術(shù)[M],西安電子科技大學(xué)出版社,2008.[24] 張家祥,[J].鄭州鐵路職業(yè)技術(shù)學(xué)院學(xué)報(bào),2007,19(4):1213.[25] [J]重慶工學(xué)院學(xué)報(bào),2009,23(1):98101.[26] 楊世勇,王培進(jìn),[J],控制理論與應(yīng)用,2007,26(7):1112.附 錄附錄AAbout anInvertedPendulum WhatisanInvertedPendulum?Remember when you were a child and you tried to balance a broomstick or baseball bat on your index finger or the palm of your hand? You had to constantly adjust the position of your hand to keep the object upright. An Inverted Pendulum does basically the same thing. However, it is limited in that it only moves in one dimension, while your hand could move up, down, sideways, etc. Check out the video provided to see exactly how the Inverted Pendulum works.An Inverted Pendulum is a physical device consisting in a cylindrical bar (usually of aluminium) free to oscillate around a fixed pivot. The pivot is mounted on a carriage, which in its turn can move on a horizontal direction. The carriage is driven by a motor, which can exert on it a variable force. The bar would naturally tend to fall down from the top vertical position, which is a position of unsteady equilibrium.Thegoaloftheexperimentistostabilizethependulum(bar)onthetopverticalposition. Thisispossiblebyexertingonthecarriagethroughthemotoraforcewhichtendstocontrast the‘free’pendulumdynamics.Thecorrectforcehastobecalculatedmeasuringtheinstantvaluesofthehorizontalpositionandthependulumangle(obtained.throughtwopotentiometers).The system pendulumcartmotor can be modeled as a linear system if all the parameters are known(masses, lengths, etc.), in order to find a controller to stabilize it. If not all the parameters are known, one can however try to ‘reconstruct’ the system parameters using measured data on the dynamics of the pendulum.Whatisitusedfor?Just like the broomstick, an Inverted Pendulum is an inherently unstable system. Force must be properly applied to keep the system intact. To achieve this, proper control theory is required. The Inverted Pendulum id essential in the evaluating an d paring of various control theory.Theinvertedpendulumisatraditionalexample(neitherdifficultnortrivial)ofacontrolledsystem.Thusitisusedinsimulationsandexperimentstoshowtheperformanceofdifferentcontrollers(.PIDcontrollers,statespacecontrollers,fuzzycontrollers ....).TheRealTimeInvertedPendulumisusedasabenchmark,totestthevalidityandtheperformanceofthesoftwareunderlyingthestatespacecontrolleralgorithm,.theusedoperatingsystem.Actuallythealgorithmisimplementformthenumericalpointofviewasasetofmutuallycooperatingtasks,whichareperiodicallyactivatedbythekernel,andwhichperformdifferentcalculations.Thewayhowthesetasksareactivated(.theactivationorder)iscalledschedulingofthetasks.Itisobviousthatacorrectschedulingofeachtaskiscrucialforagoodperformanceofthecontroller,andhenceforaneffectivependulumstabilization.Thustheinvertedpendulumisveryusefulindeterminewhetheraparticularschedulingchoiceisbetterthananotherone,inwhichcases,towhichextent,andsoon.The Inverted Pendulum is a traditional example (neither difficult nor trivial) of a controlled system. Thus it is used in simulations and experiments to show the pe