freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高中數(shù)學(xué)解題方法大全-資料下載頁

2025-01-18 07:42本頁面
  

【正文】 、y=2cosα,再求d=的最大值,選C。Ⅱ、示范性題組:例1. 實數(shù)a、b、c滿足a+b+c=1,求a+b+c的最小值?!痉治觥坑蒩+b+c=1 想到“均值換元法”,于是引入了新的參數(shù),即設(shè)a=+t,b=+t,c=+t,代入a+b+c可求?!窘狻坑蒩+b+c=1,設(shè)a=+t,b=+t,c=+t,其中t+t+t=0,∴ a+b+c=(+t)+(+t)+(+t)=+(t+t+t)+t+t+t=+t+t+t≥所以a+b+c的最小值是?!咀ⅰ坑伞熬祿Q元法”引入了三個參數(shù),卻將代數(shù)式的研究進行了簡化,是本題此種解法的一個技巧。本題另一種解題思路是利用均值不等式和“配方法”進行求解,解法是:a+b+c=(a+b+c)-2(ab+bc+ac)≥1-2(a+b+c),即a+b+c≥。兩種解法都要求代數(shù)變形的技巧性強,多次練習(xí),可以提高我們的代數(shù)變形能力。例2. 橢圓+=1上有兩點P、Q,O為原點。連OP、OQ,若kk=- , ①.求證:|OP|+|OQ|等于定值; ②.求線段PQ中點M的軌跡方程。【分析】 由“換元法”引入新的參數(shù),即設(shè)(橢圓參數(shù)方程),參數(shù)θ、θ為P、Q兩點,先計算kk得出一個結(jié)論,再計算|OP|+|OQ|,并運用“參數(shù)法”求中點M的坐標(biāo),消參而得?!窘狻坑桑?,設(shè),P(4cosθ,2sinθ),Q(4cosθ,2sinθ),則kk==-,整理得到:cosθ cosθ+sinθ sinθ=0,即cos(θ-θ)=0?!? |OP|+|OQ|=16cosθ+4sinθ+16cosθ+4sinθ=8+12(cosθ+cosθ)=20+6(cos2θ+cos2θ)=20+12cos(θ+θ)cos(θ-θ)=20,即|OP|+|OQ|等于定值20。由中點坐標(biāo)公式得到線段PQ的中點M的坐標(biāo)為,所以有()+y=2+2(cosθ cosθ+sinθ sinθ)=2,即所求線段PQ的中點M的軌跡方程為+=1。【注】由橢圓方程,聯(lián)想到a+b=1,于是進行“三角換元”,通過換元引入新的參數(shù),轉(zhuǎn)化成為三角問題進行研究。本題還要求能夠熟練使用三角公式和“平方法”,在由中點坐標(biāo)公式求出M點的坐標(biāo)后,將所得方程組稍作變形,再平方相加,即(cosθ+ cosθ)+(sinθ+sinθ),這是求點M軌跡方程“消參法”的關(guān)鍵一步。一般地,求動點的軌跡方程運用“參數(shù)法”時,我們可以將點的x、y坐標(biāo)分別表示成為一個或幾個參數(shù)的函數(shù),再運用“消去法”消去所含的參數(shù),即得到了所求的軌跡方程。本題的第一問,另一種思路是設(shè)直線斜率k,解出P、Q兩點坐標(biāo)再求:設(shè)直線OP的斜率k,則OQ的斜率為-,由橢圓與直線OP、OQ相交于PQ兩點有:,消y得(1+4k)x=16,即|x|=;,消y得(1+)x=16,即|x|=;所以|OP|+|OQ|=()+()==20。即|OP|+|OQ|等于定值20。在此解法中,利用了直線上兩點之間的距離公式|AB|=|x-x|求|OP|和|OQ|的長。 S E D C O F A B—ABCD的側(cè)面與底面的夾角為β,相鄰兩側(cè)面的夾角為α,求證:cosα=cosβ?!痉治觥恳C明cosα=cosβ,考慮求出α、β的余弦,則在α和β所在的三角形中利用有關(guān)定理求解?!窘狻窟BAC、BD交于O,連SO;取BC中點F,連SF、OF;作BE⊥SC于E,連DE。則∠SFO=β,∠DEB=α。 設(shè)BC=a (為參數(shù)), 則SF==, SC===又 ∵BE===在△DEB中,由余弦定理有:cosα===-cosβ。所以cosα=-cosβ?!咀ⅰ?設(shè)參數(shù)a而不求參數(shù)a,只是利用其作為中間變量輔助計算,這也是在參數(shù)法中參數(shù)可以起的一個作用,即設(shè)參數(shù)輔助解決有關(guān)問題。Ⅲ、鞏固性題組:1. 已知復(fù)數(shù)z滿足|z|≤1,則復(fù)數(shù)z+2i在復(fù)平面上表示的點的軌跡是________________。2. 函數(shù)y=x+2+的值域是________________。3. 拋物線y=x-10xcosθ+25+3sinθ-25sinθ與x軸兩個交點距離的最大值為_____A. 5 B. 10 C. 2 D. 34. 過點M(0,1)作直線L,使它與兩已知直線L:x-3y+10=0及L:2x+y-8=0所截得的線段被點P平分,求直線L方程。5. 求半徑為R的球的內(nèi)接圓錐的最大體積。6. f(x)=(1-cosx)sinx,x∈[0,2π),求使f(x)≤1的實數(shù)a的取值范圍。7. 若關(guān)于x的方程2x+xlg+lg()+lg=0有模為1的虛根,求實數(shù)a的值及方程的根。8. 給定的拋物線y=2px (p0),證明:在x軸的正向上一定存在一點M,使得對于拋物線的任意一條過點M的弦PQ,有+為定值。七、反證法與前面所講的方法不同,反證法是屬于“間接證明法”一類,是從反面的角度思考問題的證明方法,即:肯定題設(shè)而否定結(jié)論,從而導(dǎo)出矛盾推理而得。法國數(shù)學(xué)家阿達瑪(Hadamard)對反證法的實質(zhì)作過概括:“若肯定定理的假設(shè)而否定其結(jié)論,就會導(dǎo)致矛盾”。具體地講,反證法就是從否定命題的結(jié)論入手,并把對命題結(jié)論的否定作為推理的已知條件,進行正確的邏輯推理,使之得到與已知條件、已知公理、定理、法則或者已經(jīng)證明為正確的命題等相矛,矛盾的原因是假設(shè)不成立,所以肯定了命題的結(jié)論,從而使命題獲得了證明。反證法所依據(jù)的是邏輯思維規(guī)律中的“矛盾律”和“排中律”。在同一思維過程中,兩個互相矛盾的判斷不能同時都為真,至少有一個是假的,這就是邏輯思維中的“矛盾律”;兩個互相矛盾的判斷不能同時都假,簡單地說“A或者非A”,這就是邏輯思維中的“排中律”。反證法在其證明過程中,得到矛盾的判斷,根據(jù)“矛盾律”,這些矛盾的判斷不能同時為真,必有一假,而已知條件、已知公理、定理、法則或者已經(jīng)證明為正確的命題都是真的,所以“否定的結(jié)論”必為假。再根據(jù)“排中律”,結(jié)論與“否定的結(jié)論”這一對立的互相否定的判斷不能同時為假,必有一真,于是我們得到原結(jié)論必為真。所以反證法是以邏輯思維的基本規(guī)律和理論為依據(jù)的,反證法是可信的。反證法的證題模式可以簡要的概括我為“否定→推理→否定”。即從否定結(jié)論開始,經(jīng)過正確無誤的推理導(dǎo)致邏輯矛盾,達到新的否定,可以認為反證法的基本思想就是“否定之否定”。應(yīng)用反證法證明的主要三步是:否定結(jié)論 → 推導(dǎo)出矛盾 → 結(jié)論成立。實施的具體步驟是:第一步,反設(shè):作出與求證結(jié)論相反的假設(shè);第二步,歸謬:將反設(shè)作為條件,并由此通過一系列的正確推理導(dǎo)出矛盾;第三步,結(jié)論:說明反設(shè)不成立,從而肯定原命題成立。在應(yīng)用反證法證題時,一定要用到“反設(shè)”進行推理,否則就不是反證法。用反證法證題時,如果欲證明的命題的方面情況只有一種,那么只要將這種情況駁倒了就可以,這種反證法又叫“歸謬法”;如果結(jié)論的方面情況有多種,那么必須將所有的反面情況一一駁倒,才能推斷原結(jié)論成立,這種證法又叫“窮舉法”。在數(shù)學(xué)解題中經(jīng)常使用反證法,牛頓曾經(jīng)說過:“反證法是數(shù)學(xué)家最精當(dāng)?shù)奈淦髦弧?。一般來講,反證法常用來證明的題型有:命題的結(jié)論以“否定形式”、“至少”或“至多”、“唯一”、“無限”形式出現(xiàn)的命題;或者否定結(jié)論更明顯。具體、簡單的命題;或者直接證明難以下手的命題,改變其思維方向,從結(jié)論入手進行反面思考,問題可能解決得十分干脆。Ⅰ、再現(xiàn)性題組:1. 已知函數(shù)f(x)在其定義域內(nèi)是減函數(shù),則方程f(x)=0 ______。 2. 已知a0,-1b0,那么a、ab、ab之間的大小關(guān)系是_____。A. aab ab B. ababa C. aba ab D. ab aba3. 已知α∩β=l,a α,b β,若a、b為異面直線,則_____。A. a、b都與l相交 B. a、b中至少一條與l相交C. a、b中至多有一條與l相交 D. a、b都與l相交4. 四面體頂點和各棱的中點共10個,在其中取4個不共面的點,不同的取法有_____。(97年全國理)A. 150種 B. 147種 C. 144種 D. 141種【簡解】1小題:從結(jié)論入手,假設(shè)四個選擇項逐一成立,導(dǎo)出其中三個與特例矛盾,選A;2小題:采用“特殊值法”,取a=-b=-,選D;3小題:從逐一假設(shè)選擇項成立著手分析,選B;4小題:分析清楚結(jié)論的幾種情況,列式是:C-C4-3-6,選D。 S C A O BⅡ、示范性題組:例1. 如圖,設(shè)SA、SB是圓錐SO的兩條母線,O是底面圓心,C是SB上一點。求證:AC與平面SOB不垂直?!痉治觥拷Y(jié)論是“不垂直”,呈“否定性”,考慮使用反證法,即假設(shè)“垂直”后再導(dǎo)出矛盾后,再肯定“不垂直”。【證明】 假設(shè)AC⊥平面SOB,∵ 直線SO在平面SOB內(nèi), ∴ AC⊥SO,∵ SO⊥底面圓O, ∴ SO⊥AB,∴ SO⊥平面SAB, ∴平面SAB∥底面圓O,這顯然出現(xiàn)矛盾,所以假設(shè)不成立。即AC與平面SOB不垂直?!咀ⅰ糠穸ㄐ缘膯栴}常用反證法。例如證明異面直線,可以假設(shè)共面,再把假設(shè)作為已知條件推導(dǎo)出矛盾。例2. 若下列方程:x+4ax-4a+3=0, x+(a-1)x+a=0, x+2ax-2a=0至少有一個方程有實根。試求實數(shù)a的取值范圍?!痉治觥?三個方程至少有一個方程有實根的反面情況僅有一種:三個方程均沒有實根。先求出反面情況時a的范圍,再所得范圍的補集就是正面情況的答案?!窘狻?設(shè)三個方程均無實根,則有:,解得,即-a-1。所以當(dāng)a≥-1或a≤-時,三個方程至少有一個方程有實根?!咀ⅰ俊爸辽佟?、“至多”問題經(jīng)常從反面考慮,有可能使情況變得簡單。本題還用到了“判別式法”、“補集法”(全集R),也可以從正面直接求解,即分別求出三個方程有實根時(△≥0)a的取值范圍,再將三個范圍并起來,即求集合的并集。兩種解法,要求對不等式解集的交、并、補概念和運算理解透徹。例3. 給定實數(shù)a,a≠0且a≠1,設(shè)函數(shù)y= (其中x∈R且x≠),證明:①.經(jīng)過這個函數(shù)圖像上任意兩個不同點的直線不平行于x軸; ②.這個函數(shù)的圖像關(guān)于直線y=x成軸對稱圖像。(88年全國理)?!痉治觥俊安黄叫小钡姆穸ㄊ恰捌叫小?,假設(shè)“平行”后得出矛盾從而推翻假設(shè)?!咀C明】 ① 設(shè)M(x,y)、M(x,y)是函數(shù)圖像上任意兩個不同的點,則x≠x,假設(shè)直線MM平行于x軸,則必有y=y(tǒng),即=,整理得a(x-x)=x-x∵x≠x ∴ a=1, 這與已知“a≠1”矛盾, 因此假設(shè)不對,即直線MM不平行于x軸。② 由y=得axy-y=x-1,即(ay-1)x=y(tǒng)-1,所以x=,即原函數(shù)y=的反函數(shù)為y=,圖像一致。由互為反函數(shù)的兩個圖像關(guān)于直線y=x對稱可以得到,函數(shù)y=的圖像關(guān)于直線y=x成軸對稱圖像。【注】對于“不平行”的否定性結(jié)論使用反證法,在假設(shè)“平行”的情況下,容易得到一些性質(zhì),經(jīng)過正確無誤的推理,導(dǎo)出與已知a≠1互相矛盾。第②問中,對稱問題使用反函數(shù)對稱性進行研究,方法比較巧妙,要求對反函數(shù)求法和性質(zhì)運用熟練。Ⅲ、鞏固性題組:1. 已知f(x)=,求證:當(dāng)x≠x時,f(x)≠f(x)。2. 已知非零實數(shù)a、b、c成等差數(shù)列,a≠c,求證:、不可能成等差數(shù)列。3. 已知f(x)=x+px+q,求證:|f(1)|、|f(2)|、|f(3)|中至少有一個不小于 。4. 求證:拋物線y=-1上不存在關(guān)于直線x+y=0對稱的兩點。5. 已知a、b∈R,且|a|+|b|1,求證:方程x+ax+b=0的兩個根的絕對值均小于1。 A F DB M NE C6. 兩個互相垂直的正方形如圖所示,M、N在相應(yīng)對角線上,且有EM=CN,求證:MN不可能垂直CF。第二章 高中數(shù)學(xué)常用的數(shù)學(xué)思想一、數(shù)形結(jié)合思想方法中學(xué)數(shù)學(xué)的基本知識分三類:一類是純粹數(shù)的知識,如實數(shù)、代數(shù)式、方程(組)、不等式(組)、函數(shù)等;一類是關(guān)于純粹形的知識,如平面幾何、立體幾何等;一類是關(guān)于數(shù)形結(jié)合的知識,主要體現(xiàn)是解析幾何。數(shù)形結(jié)合是一個數(shù)學(xué)思想方法,包含“以形助數(shù)”和“以數(shù)輔形”兩個方面,其應(yīng)用大致可以分為兩種情形:或者是借助形的生動和直觀性來闡明數(shù)之間的聯(lián)系,即以形作為手段,數(shù)為目的,比如應(yīng)用函數(shù)的圖像來直觀地說明函數(shù)的性質(zhì);或者是借助于數(shù)的精確性和規(guī)范嚴(yán)密性來闡明形的某些屬性,即以數(shù)作為手段,形作為目的,如應(yīng)用曲線的方程來精確地闡明曲線的幾何性質(zhì)。恩格斯曾說過:“數(shù)學(xué)是研究現(xiàn)實世界的量的關(guān)系與空間形式的科學(xué)。”數(shù)形結(jié)合就是根據(jù)數(shù)學(xué)問題的條件和結(jié)論之間的內(nèi)在聯(lián)系,既分析其代數(shù)意義,又揭示其幾何直觀,使數(shù)量關(guān)的精確刻劃與空間形式的直觀形象巧妙、和諧地結(jié)合在一起,充分利用這種結(jié)合,尋找解題思路,使問題化難為易、化繁為簡,從而得到解決。“數(shù)”與“形”是一對矛盾,宇宙間萬物無不是“數(shù)”和“形”的矛盾的統(tǒng)一。華羅庚先生說過:數(shù)缺形時少直觀,形少數(shù)時難入微,數(shù)形結(jié)合百般好,隔裂分家萬事休。數(shù)形結(jié)合的思想,其實質(zhì)是將抽象的數(shù)學(xué)語言與直觀的圖像結(jié)合起來,關(guān)鍵是代數(shù)問題與圖形之間的相互轉(zhuǎn)化,它可以使代數(shù)問題幾何化,幾何問題代數(shù)化。在運用數(shù)形結(jié)合思想分析和解決問題時,要注意三點:第一要徹底明白一些概念和運算的幾
點擊復(fù)制文檔內(nèi)容
試題試卷相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1