【總結】高考文科數(shù)學導數(shù)專題復習第1講 變化率與導數(shù)、導數(shù)的計算知識梳理(1)函數(shù)y=f(x)在x=x0處的導數(shù)f′(x0)或y′|x=x0,即f′(x0)=.(2)函數(shù)f(x)的導函數(shù)f′(x)=為f(x)的導函數(shù).=f(x)在點x0處的導數(shù)的幾何意義,就是曲線y=f(x)在點P(x0,f(x0))處的切線的斜率,過點P的切線方程為y-y0=f′(x0)(x-x0).
2025-04-17 13:17
【總結】導數(shù)測試題(文科)一、選擇題1、已知函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)可導,且x0∈(a,b)則000()()2limhfxhfxhh????的值為()A、f’(x0)B、2f’(x0)C、-2f’(x0)D、02、f(x)=ax3+3x2+2,若
2024-11-02 19:35
【總結】導數(shù)復習知識點一、導數(shù)的概念導數(shù)。二、導數(shù)的幾何意義函數(shù)y=f(x)在點處的導數(shù),就是曲線y=(x)在點處的切線的斜率.由此,可以利用導數(shù)求曲線的切線方程.具體求法分兩步:(1)求出函數(shù)y=f(x)在點處的導數(shù),即曲線y=f(x)在點處的切線的斜率;(2)在已知切點坐標和切線斜率的條件下,求得切線方程為 三、常見函數(shù)
2024-08-18 12:00
【總結】(二次函數(shù)區(qū)間最值的例子)第三種:構造函數(shù)求最值題型特征:恒成立恒成立;從而轉化為第一、二種題型例3;已知函數(shù)圖象上一點處的切線斜率為,(Ⅰ)求的值;(Ⅱ)當時,求的值域;(Ⅲ)當時,不等式恒成立,求實數(shù)t的取值范圍。二、題型一:已知函數(shù)在某個區(qū)間上的單調(diào)性求參數(shù)的范圍解法1:轉化為在給定區(qū)間上恒成立,回歸基礎題型解法2:利用子區(qū)間(即子集思
2025-04-17 13:10
【總結】精品資源高三數(shù)學第一輪復習講義(74)導數(shù)的概念及運算一.復習目標:理解導數(shù)的概念和導數(shù)的幾何意義,會求簡單的函數(shù)的導數(shù)和曲線在一點處的切線方程.二.知識要點:1.導數(shù)的概念:
2025-04-17 00:39
【總結】導數(shù)的應用(文科)[課前導引][課前導引]1.D1.C0.B2.A)(,22:.223?????的值為數(shù)則整都是銳角任意點處的切線的傾角上若曲線aaxaxxyC[課前導引]1.D1.C
2024-11-19 02:58
【總結】山東農(nóng)業(yè)大學高等數(shù)學主講人:蘇本堂二、高階導數(shù)的運算法則一、高階導數(shù)的概念§高階導數(shù)山東農(nóng)業(yè)大學高等數(shù)學
2025-05-12 21:33
【總結】河北饒陽中學2014屆數(shù)學一輪復習試題[來源:中教網(wǎng)]A組 專項基礎訓練(時間:35分鐘,滿分:57分)一、選擇題(每小題5分,共20分)1.若函數(shù)f(x)=ax4+bx2+c滿足f′(1)=2,則f′(-1)等于 ( )A.-1B.-2C.2D.0答案 B解析 f′(x)=4ax3+2bx,∵f′(x)為奇函數(shù)且f′(1)=2
2024-08-26 10:36
【總結】第一節(jié)導數(shù)的概念及運算第三單元導數(shù)及其應用基礎梳理1.函數(shù)f(x)在區(qū)間[x1,x2]上的平均變化率(1)函數(shù)f(x)在區(qū)間[x1,x2]上的平均變化率為________.(2)平均變化率是曲線陡峭程度的“________”,或者說,曲線陡峭程度是平均變化率的“________”.2.函數(shù)f(x)在x=x
2024-11-12 17:12
【總結】專題8:導數(shù)(文)經(jīng)典例題剖析考點一:求導公式。例1.是的導函數(shù),則的值是。考點二:導數(shù)的幾何意義。例2.已知函數(shù)的圖象在點處的切線方程是,則。。考點三:導數(shù)的幾何意義的應用。:,直線,且直線與曲線C相切于點,求直線的方程及切點坐標??键c四:函數(shù)的單調(diào)性。,求的取值范
2025-04-04 05:16
【總結】導數(shù)文科大題1.知函數(shù)?,?.?(1)求函數(shù)?的單調(diào)區(qū)間;?(2)若關于?的方程?有實數(shù)根,求實數(shù)?的取值范圍.答案解析2.已知?,??(1)若?,求函數(shù)?在點?處的切線方程;
2025-07-26 05:40
【總結】2014高考文科數(shù)學:導數(shù)知識點總結考點梳理1.平均變化率及瞬時變化率(1)f(x)從x1到x2的平均變化率是:=;(2)f(x)在x=x0處的瞬時變化率是:=;2.導數(shù)的概念(1)f(x)在x=x0處的導數(shù)就是f(x)在x=x0處的瞬時變化率,記|或,即=.(2)當把上式中的看作變量x時,即為的導函數(shù),簡稱導數(shù),即==3.導數(shù)的幾何意義函數(shù)f
2025-01-19 00:03
【總結】常見函數(shù)的導數(shù)教學過程Ⅰ.課題導入[師]我們上一節(jié)課學習了導數(shù)的概念,導數(shù)的幾何意義.我們是用極限來定義函數(shù)的導數(shù)的,我們這節(jié)課來求幾種常見函數(shù)的導數(shù).以后可以把它們當作直接的結論來用.Ⅱ.講授新課[師]請幾位同學上來用導數(shù)的定義求函數(shù)的導數(shù).=C(C是常數(shù)),求y′.[學生板演]解:y=f(x)=C,∴
2024-11-19 19:51
【總結】文科導數(shù)題型歸納請同學們高度重視:首先,關于二次函數(shù)的不等式恒成立的主要解法:1、分離變量;2變更主元;3根分布;4判別式法5、二次函數(shù)區(qū)間最值求法:(1)對稱軸(重視單調(diào)區(qū)間)與定義域的關系(2)端點處和頂點是最值所在其次,分析每種題型的本質,你會發(fā)現(xiàn)大部分都在解決“不等式恒成立問題”以及“充分應用數(shù)形結合思想”,創(chuàng)建不等關系求出取值范圍。
2024-08-18 16:52
【總結】文科導數(shù)題型歸納請同學們高度重視:首先,關于二次函數(shù)的不等式恒成立的主要解法:1、分離變量;2變更主元;3根分布;4判別式法5、二次函數(shù)區(qū)間最值求法:(1)對稱軸(重視單調(diào)區(qū)間)與定義域的關系(2)端點處和頂點是最值所在其次,分析每種題型的本質,你會發(fā)現(xiàn)大部分都在解決“不等式恒
2024-11-02 19:39