【總結(jié)】§導(dǎo)數(shù)的運(yùn)算常數(shù)與冪函數(shù)的導(dǎo)數(shù)導(dǎo)數(shù)公式表一、基礎(chǔ)過(guò)關(guān)1.下列結(jié)論中正確的個(gè)數(shù)為()①y=ln2,則y′=12②y=1x2,則y′|x=3=-227③y=2x,則y′=2xln2④y=log2x,則y′=1xln2A.0
2024-12-03 11:30
【總結(jié)】1第六節(jié)高階導(dǎo)數(shù)一、問(wèn)題的提出二、主要定理三、典型例題四、小結(jié)與思考2一、問(wèn)題的提出問(wèn)題:(1)解析函數(shù)是否有高階導(dǎo)數(shù)?(2)若有高階導(dǎo)數(shù),其定義和求法是否與實(shí)變函數(shù)相同?回答:(1)解析函數(shù)有各高階導(dǎo)數(shù).(2)高階導(dǎo)數(shù)的值可以用函數(shù)在邊界上的值通過(guò)積分來(lái)表示
2025-04-30 12:01
【總結(jié)】第五講原函數(shù)與不定積分Cauchy積分公式解析函數(shù)的高階導(dǎo)數(shù)?1.原函數(shù)與不定積分的概念?2.積分計(jì)算公式§原函數(shù)與不定積分1.原函數(shù)與不定積分的概念由§2基本定理的推論知:設(shè)f(z)在單連通區(qū)域B內(nèi)解析,則對(duì)B中任意曲線C,積分?cfdz與路徑
2025-05-15 01:34
【總結(jié)】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》函數(shù)的和、差、積、商的導(dǎo)數(shù)(2)導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):1.理解兩個(gè)函數(shù)的積的導(dǎo)數(shù)法則、和(或差)的導(dǎo)數(shù)法則,學(xué)會(huì)用法則求復(fù)雜形式的函數(shù)的導(dǎo)數(shù)教學(xué)重點(diǎn):靈活應(yīng)用函數(shù)的和、差、積、商的求導(dǎo)法則教學(xué)難點(diǎn):函數(shù)的積、商的求導(dǎo)法則的綜合應(yīng)用.
2024-12-05 06:45
【總結(jié)】*微分學(xué)是微積分的重要組成部分,它的基本概念是導(dǎo)數(shù)和微分.*兩個(gè)基本概念來(lái)源于兩類問(wèn)題:1)研究函數(shù)在某點(diǎn)變化的快慢,即變化率問(wèn)題;2)研究當(dāng)自變量變化少許時(shí),函數(shù)變化了多少,即改變量問(wèn)題;*本章基本內(nèi)容就是建立導(dǎo)數(shù)和微分的概念,討論函數(shù)的求導(dǎo)方法和微分運(yùn)算方法.前者引出
2025-01-19 10:38
【總結(jié)】導(dǎo)數(shù)基本知識(shí)匯總試題基本知識(shí)點(diǎn):知識(shí)點(diǎn)一、基本初等函數(shù)的導(dǎo)數(shù)公式表(須掌握的知識(shí)點(diǎn))1、2、(n為正整數(shù))3、4、5、6、7、8、知識(shí)點(diǎn)二:導(dǎo)數(shù)的四則運(yùn)算法則1、2、3、4、知識(shí)點(diǎn)三:利用函數(shù)導(dǎo)數(shù)判斷函數(shù)單調(diào)性的法則1、如果在內(nèi),,則在此區(qū)間是增區(qū)間,為的單調(diào)增區(qū)間。2、如果在
2025-06-30 20:03
【總結(jié)】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》導(dǎo)數(shù)在函數(shù)中的應(yīng)用單調(diào)性(2)導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):會(huì)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性并求函數(shù)的單調(diào)區(qū)間.利用函數(shù)的單調(diào)性解決含參問(wèn)題。教學(xué)重點(diǎn):函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系教學(xué)難點(diǎn):探索函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系預(yù)習(xí)檢測(cè):課堂探究:
2024-12-05 06:44
【總結(jié)】選修1-2導(dǎo)數(shù)的四則運(yùn)算法則一、選擇題1.函數(shù)f(x)=1x3+2x+1的導(dǎo)數(shù)是()A.1(x3+2x+1)2B.3x2+2(x3+2x+1)2C.-3x2-2(x3+2x+1)2D.-3x2(x3+2x+1)2[答案]C[解析]f′(x
2025-11-09 15:46
【總結(jié)】精品資源第十三章導(dǎo)數(shù)13、1導(dǎo)數(shù)的概念與和、差、積、商的導(dǎo)數(shù)【要點(diǎn)和目標(biāo)】.兩個(gè)函數(shù)的和、差、積、.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值.函數(shù)的最大值和最小值目標(biāo) ⑴了解導(dǎo)數(shù)概念的某些實(shí)際背景(如瞬時(shí)速度,加速度,光滑曲線切線的斜率等);掌握函數(shù)在一點(diǎn)處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義;理解導(dǎo)函數(shù)的概念.⑵熟記基本導(dǎo)數(shù)公式(c,xm(m為有理數(shù)),,,,,,的導(dǎo)數(shù)
2025-04-17 00:39
【總結(jié)】()基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的運(yùn)算法則我們今后可以直接使用的基本初等函數(shù)的導(dǎo)數(shù)公式11.(),'()0;2.(),'();3.()sin,'()cos;4.()cos,'()sin;5.(),'()l
2025-11-09 12:13
【總結(jié)】一、隱函數(shù)的導(dǎo)數(shù)定義:.)(稱為隱函數(shù)由方程所確定的函數(shù)xyy?.)(形式稱為顯函數(shù)xfy?0),(?yxF)(xfy?隱函數(shù)的顯化問(wèn)題:隱函數(shù)不易顯化或不能顯化如何求導(dǎo)?隱函數(shù)求導(dǎo)法則:用復(fù)合函數(shù)求導(dǎo)法則直接對(duì)方程兩邊求導(dǎo).例1.,00????xyxdxdydxdyy
2025-07-24 06:04
【總結(jié)】精品資源第83課時(shí)課題:導(dǎo)數(shù)的應(yīng)用高三數(shù)學(xué)第一輪復(fù)習(xí)講義(76)導(dǎo)數(shù)的應(yīng)用一.復(fù)習(xí)目標(biāo):1.了解可導(dǎo)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系;2.了解可導(dǎo)函數(shù)在某點(diǎn)取得極值的必要條件和充分條件(導(dǎo)數(shù)在極值點(diǎn)兩側(cè)異號(hào)),會(huì)求一些實(shí)際問(wèn)題的最大值和最小值.二.知識(shí)要點(diǎn):1.函數(shù)的單調(diào)性:設(shè)函數(shù)在某區(qū)間內(nèi)可導(dǎo),則在該區(qū)間上單調(diào)遞增;在該
【總結(jié)】第三節(jié)一、隱函數(shù)的導(dǎo)數(shù)二、由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)隱函數(shù)和由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)第二章一、隱函數(shù)的導(dǎo)數(shù)1.定義注1°所確定是由若0),()()(???yxFDxxyy;則)(0)](,[DxxyxF??的隱函數(shù),中可由若隱函數(shù)0),()()(???yxFDxxyy.
2025-07-24 06:08
【總結(jié)】選修1-1導(dǎo)數(shù)的實(shí)際應(yīng)用一、選擇題1.如果圓柱軸截面的周長(zhǎng)l為定值,則體積的最大值為()A.(l6)3πB.(l3)3πC.(l4)3π(l4)3π[答案]A[解析]設(shè)圓柱的底面半徑為r,高為h,體積為V,則4r+2h=l,∴h=l-4r2,V=πr2h=l
2025-11-10 05:04
【總結(jié)】班級(jí)_______________姓名_____________________學(xué)習(xí)目標(biāo):,求函數(shù)的導(dǎo)數(shù);.復(fù)習(xí)回顧:;2.導(dǎo)數(shù)的幾何意義和物理意義分別是什么?知識(shí)點(diǎn):導(dǎo)函數(shù)的概念:若函數(shù)在處的導(dǎo)數(shù)存在,,,對(duì)開(kāi)區(qū)間內(nèi)每一個(gè)值,,在區(qū)間內(nèi),構(gòu)成一個(gè)新的函數(shù),(或).,如果不特別指明求某一點(diǎn)的導(dǎo)數(shù),那么求導(dǎo)數(shù)就是求導(dǎo)函數(shù).例證題:,并說(shuō)明(1)(2)所求結(jié)果的幾何
2025-08-22 11:39