【總結(jié)】隱函數(shù)及其求導(dǎo)法則我們知道用解析法表示函數(shù),可以有不同的形式.若函數(shù)y可以用含自變量x的算式表示,像y=sinx,y=1+3x等,這樣的函數(shù)叫顯函數(shù).前面我們所遇到的函數(shù)大多都是顯函數(shù).一般地,如果方程F(x,y)=0中,令x在某一區(qū)間內(nèi)任取一值時(shí),相應(yīng)地總有滿足此方程的y值存在,則我們就
2025-08-13 13:15
【總結(jié)】復(fù)合函數(shù)的求導(dǎo)法則在學(xué)習(xí)此法則之前我們先來看一個(gè)例子!例題:求=?解答:由于,故這個(gè)解答正確嗎?這個(gè)解答是錯(cuò)誤的,正確的解答應(yīng)該如下:我們發(fā)生錯(cuò)誤的原因是是對(duì)自變量x求導(dǎo),而不是對(duì)2x求導(dǎo)。下面我們給出復(fù)合函數(shù)的求導(dǎo)法則復(fù)合函數(shù)的求導(dǎo)規(guī)則
【總結(jié)】的函數(shù)的求導(dǎo)一、隱函數(shù)的導(dǎo)數(shù)二、由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)返回一、隱函數(shù)的導(dǎo)數(shù)定義:.),(稱為隱函數(shù)由方程所確定的函數(shù)0?yxF.)(形式稱為顯函數(shù)xfy?0),(?yxF)(xfy?隱函數(shù)的顯化問題:隱函數(shù)不易顯化或不能顯化如何求導(dǎo)?隱函數(shù)求導(dǎo)法則:用復(fù)合函數(shù)求導(dǎo)法則直接對(duì)方程兩
2025-07-21 12:40
【總結(jié)】高等數(shù)學(xué)教案第九章多元函數(shù)微分法及其應(yīng)用第五節(jié)隱函數(shù)的求導(dǎo)法則一、一個(gè)方程的情形隱函數(shù)存在定理1設(shè)函數(shù)在點(diǎn)的某一鄰域內(nèi)具有連續(xù)偏導(dǎo)數(shù),,,則方程在點(diǎn)的某一鄰域內(nèi)恒能唯一確定一個(gè)連續(xù)且具有連續(xù)導(dǎo)數(shù)的函數(shù),它滿足條件,并有.說明:1)定理證明略,現(xiàn)僅給
2025-08-05 18:49
【總結(jié)】隱函數(shù)的求導(dǎo)法則一、一個(gè)方程的情形二、方程組的情形一、一個(gè)方程的情形0),(.1?yxF定義:).(0),(,,0),(,xyyyxFyxyxFyx???隱函數(shù)在該區(qū)間內(nèi)確定了一個(gè)稱方程此時(shí)值與之對(duì)應(yīng)相應(yīng)地總有唯一的時(shí)取某一區(qū)間的任一值在一定條件下,當(dāng),滿足方
2025-01-20 05:31
【總結(jié)】一、一個(gè)方程的情形二、方程組的情形三、小結(jié)思考題第五節(jié)隱函數(shù)的求導(dǎo)公式0),(.1?yxF一、一個(gè)方程的情形隱函數(shù)存在定理1設(shè)函數(shù)),(yxF在點(diǎn)),(00yxP的某一鄰域內(nèi)具有連續(xù)的偏導(dǎo)數(shù),且0),(00?yxF,0),(00?yxFy,則方程0),(?yxF在點(diǎn)),
2025-08-11 16:41
【總結(jié)】山東農(nóng)業(yè)大學(xué)高等數(shù)學(xué)主講人:蘇本堂一、空間曲線的一般方程二、空間曲線的參數(shù)方程三、空間曲線在坐標(biāo)面的投影§空間曲線及其方程山東農(nóng)業(yè)大學(xué)高等數(shù)
2025-07-25 04:16
【總結(jié)】第四節(jié)一元復(fù)合函數(shù)求導(dǎo)法則本節(jié)內(nèi)容:一、多元復(fù)合函數(shù)求導(dǎo)的鏈?zhǔn)椒▌t二、多元復(fù)合函數(shù)的全微分微分法則機(jī)動(dòng)目錄上頁下頁返回結(jié)束多元復(fù)合函數(shù)的求導(dǎo)法則一、多元函數(shù)與一元函數(shù)的復(fù)合(,)zfxy?()()xtvt???????多元
2025-01-19 14:36
【總結(jié)】第五節(jié)隱函數(shù)及參數(shù)方程的求導(dǎo)方法、高階導(dǎo)數(shù)一、隱函數(shù)的微分法二、由參數(shù)方程所確定的函數(shù)的微分法第三模塊函數(shù)的微分學(xué)三、對(duì)數(shù)微分法四、高階導(dǎo)數(shù)一、隱函數(shù)的微分法例1設(shè)方程x2+y2=R2(R為常數(shù))確定函數(shù)y=y(x),.ddxy求解在方程兩邊求微分,
2025-04-30 13:59
【總結(jié)】第五節(jié)隱函數(shù)的求導(dǎo)法則一、一個(gè)方程的情形二、方程組的情形三、由方程組確定的反函數(shù)的求導(dǎo)公式0),(.1?yxF隱函數(shù)存在定理1設(shè)函數(shù)在點(diǎn)的某一鄰域內(nèi)具有連續(xù)的偏導(dǎo)數(shù),且則方程在點(diǎn)的某一鄰域內(nèi)恒能唯一確定一個(gè)單值連續(xù)且具有連續(xù)導(dǎo)數(shù)的函數(shù))(xf
2024-10-17 12:16
【總結(jié)】多元復(fù)合函數(shù)的求導(dǎo)法在一元函數(shù)中,我們已經(jīng)知道,復(fù)合函數(shù)的求導(dǎo)公式在求導(dǎo)法中所起的重要作用,對(duì)于多元函數(shù)來說也是如此。下面我們來學(xué)習(xí)多元函數(shù)的復(fù)合函數(shù)的求導(dǎo)公式。我們先以二元函數(shù)為例:多元復(fù)合函數(shù)的求導(dǎo)公式鏈導(dǎo)公式:設(shè)均在(x,y)處可導(dǎo),函數(shù)z=F(u,v)在對(duì)應(yīng)的(u,v)處有連續(xù)的一階偏導(dǎo)數(shù),那末
2025-08-12 17:21
【總結(jié)】簡(jiǎn)單復(fù)合函數(shù)的求導(dǎo)法則:設(shè)函數(shù)u(x)、v(x)是x的可導(dǎo)函數(shù),則1)(()())''()'()uxvxuxvx???2)(()())''()()()'()uxvxuxvxuxvx???推論:[
2024-11-12 01:24
【總結(jié)】一、多元復(fù)合函數(shù)求導(dǎo)法則二、小結(jié)思考題第四節(jié)多元復(fù)合函數(shù)的求導(dǎo)法則一、多元復(fù)合函數(shù)的求導(dǎo)法則在一元函數(shù)微分學(xué)中,復(fù)合函數(shù)的求導(dǎo)法則起著重要的作用.現(xiàn)在我們把它推廣到多元復(fù)合函數(shù)的情形.下面按照多元復(fù)合函數(shù)不同的復(fù)合情形,分三種情況進(jìn)行討論.定理1如果函數(shù))(tu?
2025-08-21 12:43
【總結(jié)】基本初等函數(shù)求導(dǎo)公式 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) , (13) (14) (15) (16) 函數(shù)的和、差、積、商的求導(dǎo)法則 設(shè),都可導(dǎo),則 ?。?) (2)?。ㄊ浅?shù)) ?。?)
2025-05-13 22:29
【總結(jié)】第二節(jié)二、反函數(shù)的求導(dǎo)法則三、復(fù)合函數(shù)求導(dǎo)法則四、初等函數(shù)的求導(dǎo)問題一、四則運(yùn)算求導(dǎo)法則機(jī)動(dòng)目錄上頁下頁返回結(jié)束函數(shù)的求導(dǎo)法則第二章思路:(構(gòu)造性定義)求導(dǎo)法則其它基本初等函數(shù)求導(dǎo)公式0xcosx1??)(C
2025-07-24 04:34