【總結】隱函數(shù)及其求導法則我們知道用解析法表示函數(shù),可以有不同的形式.若函數(shù)y可以用含自變量x的算式表示,像y=sinx,y=1+3x等,這樣的函數(shù)叫顯函數(shù).前面我們所遇到的函數(shù)大多都是顯函數(shù).一般地,如果方程F(x,y)=0中,令x在某一區(qū)間內(nèi)任取一值時,相應地總有滿足此方程的y值存在,則我們就
2024-08-22 13:15
【總結】復合函數(shù)的求導法則在學習此法則之前我們先來看一個例子!例題:求=?解答:由于,故這個解答正確嗎?這個解答是錯誤的,正確的解答應該如下:我們發(fā)生錯誤的原因是是對自變量x求導,而不是對2x求導。下面我們給出復合函數(shù)的求導法則復合函數(shù)的求導規(guī)則
【總結】的函數(shù)的求導一、隱函數(shù)的導數(shù)二、由參數(shù)方程所確定的函數(shù)的導數(shù)返回一、隱函數(shù)的導數(shù)定義:.),(稱為隱函數(shù)由方程所確定的函數(shù)0?yxF.)(形式稱為顯函數(shù)xfy?0),(?yxF)(xfy?隱函數(shù)的顯化問題:隱函數(shù)不易顯化或不能顯化如何求導?隱函數(shù)求導法則:用復合函數(shù)求導法則直接對方程兩
2024-07-30 12:40
【總結】高等數(shù)學教案第九章多元函數(shù)微分法及其應用第五節(jié)隱函數(shù)的求導法則一、一個方程的情形隱函數(shù)存在定理1設函數(shù)在點的某一鄰域內(nèi)具有連續(xù)偏導數(shù),,,則方程在點的某一鄰域內(nèi)恒能唯一確定一個連續(xù)且具有連續(xù)導數(shù)的函數(shù),它滿足條件,并有.說明:1)定理證明略,現(xiàn)僅給
2024-08-14 18:49
【總結】隱函數(shù)的求導法則一、一個方程的情形二、方程組的情形一、一個方程的情形0),(.1?yxF定義:).(0),(,,0),(,xyyyxFyxyxFyx???隱函數(shù)在該區(qū)間內(nèi)確定了一個稱方程此時值與之對應相應地總有唯一的時取某一區(qū)間的任一值在一定條件下,當,滿足方
2025-01-20 05:31
【總結】一、一個方程的情形二、方程組的情形三、小結思考題第五節(jié)隱函數(shù)的求導公式0),(.1?yxF一、一個方程的情形隱函數(shù)存在定理1設函數(shù)),(yxF在點),(00yxP的某一鄰域內(nèi)具有連續(xù)的偏導數(shù),且0),(00?yxF,0),(00?yxFy,則方程0),(?yxF在點),
2024-08-20 16:41
【總結】山東農(nóng)業(yè)大學高等數(shù)學主講人:蘇本堂一、空間曲線的一般方程二、空間曲線的參數(shù)方程三、空間曲線在坐標面的投影§空間曲線及其方程山東農(nóng)業(yè)大學高等數(shù)
2024-08-03 04:16
【總結】第四節(jié)一元復合函數(shù)求導法則本節(jié)內(nèi)容:一、多元復合函數(shù)求導的鏈式法則二、多元復合函數(shù)的全微分微分法則機動目錄上頁下頁返回結束多元復合函數(shù)的求導法則一、多元函數(shù)與一元函數(shù)的復合(,)zfxy?()()xtvt???????多元
2025-01-19 14:36
【總結】第五節(jié)隱函數(shù)及參數(shù)方程的求導方法、高階導數(shù)一、隱函數(shù)的微分法二、由參數(shù)方程所確定的函數(shù)的微分法第三模塊函數(shù)的微分學三、對數(shù)微分法四、高階導數(shù)一、隱函數(shù)的微分法例1設方程x2+y2=R2(R為常數(shù))確定函數(shù)y=y(x),.ddxy求解在方程兩邊求微分,
2025-04-30 13:59
【總結】第五節(jié)隱函數(shù)的求導法則一、一個方程的情形二、方程組的情形三、由方程組確定的反函數(shù)的求導公式0),(.1?yxF隱函數(shù)存在定理1設函數(shù)在點的某一鄰域內(nèi)具有連續(xù)的偏導數(shù),且則方程在點的某一鄰域內(nèi)恒能唯一確定一個單值連續(xù)且具有連續(xù)導數(shù)的函數(shù))(xf
2024-10-17 12:16
【總結】多元復合函數(shù)的求導法在一元函數(shù)中,我們已經(jīng)知道,復合函數(shù)的求導公式在求導法中所起的重要作用,對于多元函數(shù)來說也是如此。下面我們來學習多元函數(shù)的復合函數(shù)的求導公式。我們先以二元函數(shù)為例:多元復合函數(shù)的求導公式鏈導公式:設均在(x,y)處可導,函數(shù)z=F(u,v)在對應的(u,v)處有連續(xù)的一階偏導數(shù),那末
2024-08-21 17:21
【總結】簡單復合函數(shù)的求導法則:設函數(shù)u(x)、v(x)是x的可導函數(shù),則1)(()())''()'()uxvxuxvx???2)(()())''()()()'()uxvxuxvxuxvx???推論:[
2024-11-12 01:24
【總結】一、多元復合函數(shù)求導法則二、小結思考題第四節(jié)多元復合函數(shù)的求導法則一、多元復合函數(shù)的求導法則在一元函數(shù)微分學中,復合函數(shù)的求導法則起著重要的作用.現(xiàn)在我們把它推廣到多元復合函數(shù)的情形.下面按照多元復合函數(shù)不同的復合情形,分三種情況進行討論.定理1如果函數(shù))(tu?
2024-08-30 12:43
【總結】基本初等函數(shù)求導公式 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) , (13) (14) (15) (16) 函數(shù)的和、差、積、商的求導法則 設,都可導,則 ?。?) ?。?)?。ㄊ浅?shù)) ?。?)
2025-05-13 22:29
【總結】第二節(jié)二、反函數(shù)的求導法則三、復合函數(shù)求導法則四、初等函數(shù)的求導問題一、四則運算求導法則機動目錄上頁下頁返回結束函數(shù)的求導法則第二章思路:(構造性定義)求導法則其它基本初等函數(shù)求導公式0xcosx1??)(C
2024-08-02 04:34