【總結(jié)】定理假設(shè)(1))(xf在],[ba上連續(xù);(2)函數(shù))(tx??在],[??上是單值的且有連續(xù)導(dǎo)數(shù);(3)當(dāng)t在區(qū)間],[??上變化時(shí),)(tx??的值在],[ba上變化,且a?)(??、b?)(??,則有dtttfdxxfba????????)()]([)(.
2025-01-14 14:36
【總結(jié)】一、基本內(nèi)容二、小結(jié)三、思考題第三節(jié)分部積分法問(wèn)題d?xxex??解決思路利用兩個(gè)函數(shù)乘積的求導(dǎo)法則.設(shè)函數(shù))(xuu?和)(xvv?具有連續(xù)導(dǎo)數(shù),??,vuvuuv???????,vuuvvu?????dd,uvxuvuvx??????dd.uvuvvu????
2025-08-21 12:44
【總結(jié)】分部積分法1分部積分法分部積分公式例題小結(jié)思考題作業(yè)integrationbyparts第4章定積分與不定積分分部積分法2??xxxde解決思路利用兩個(gè)函數(shù)乘積的求導(dǎo)法則.vuvuuv?????)(vuuvvu?????)(???xv
2025-02-21 16:11
【總結(jié)】1§3分部積分法定理若????uxvx與可導(dǎo),不定積分????uxvxdx??存在,則也存在,并有????uxvxdx??????????????,uxvxdxuxvxuxvxdx??????證明:????????
2025-08-23 14:16
【總結(jié)】2設(shè)函數(shù))(xu、)(xv在區(qū)間??ba,上具有連續(xù)導(dǎo)數(shù),則有??????bababavduuvudv.定積分的分部積分公式推導(dǎo)??,vuvuuv???????,)(babauvdxuv?????,??????bababadxvudxvu
2025-05-11 04:24
【總結(jié)】第二節(jié)換元積分法本節(jié)內(nèi)容提要一、第一類換元積分法(湊微分法)二、第二類換元積分法教學(xué)目的:使生熟練掌握湊微分法求不定積分、掌握第二類換元積分法中的根式置換法,了解三角置換法求不定積分重點(diǎn):湊微分法、根式置換法求不定積分難點(diǎn):湊微分法求不定積分教學(xué)方法:?jiǎn)l(fā)式教
2025-08-05 11:03
【總結(jié)】第六章定積分應(yīng)用習(xí)題課一、定積分應(yīng)用的類型1.幾何應(yīng)用?????平面圖形的面積特殊立體的體積平面曲線弧長(zhǎng)???旋轉(zhuǎn)體的體積平行截面面積為已知立體的體積2.物理應(yīng)用?????變力作功水壓力引力二、構(gòu)造微元的基本思想及解題步驟1.構(gòu)造微元的基本思想
2025-01-20 00:54
【總結(jié)】?xxd2cosCx?2sin解決方法將積分變量換成令xt2???xxd2costtdcos21??Ct??sin21Cx??2sin21????x2sinx2cos????xxdcosCx?sinx2cos2.2x因?yàn)?xd)d(221x
2025-08-05 07:16
【總結(jié)】一、第一換元積分法(湊微分法)直接驗(yàn)證得知,計(jì)算方法正確.例1求xxde3?.解被積函數(shù)x3e是復(fù)合函數(shù),不能直接套用公式,我們可以把原積分作下列變形后計(jì)算:???Cxxxede????xuxxxx3)d(3e31de33令???C
2025-08-01 15:27
【總結(jié)】數(shù)學(xué)系數(shù)學(xué)與應(yīng)用數(shù)學(xué)2010級(jí)畢業(yè)論文不等式證明的積分法是利用積分的定義,性質(zhì),以及用一些特殊的積分不等式來(lái)證明不等式。定積的概念例1設(shè)在連續(xù),證明證明將區(qū)間進(jìn)行等分,取因?yàn)閮蛇吶?duì)數(shù)得兩邊在時(shí)取極限得積分中值定理法積分中值定理如果函數(shù)在上連續(xù),則在內(nèi)至少存在一點(diǎn),使得例2試證當(dāng)時(shí),.證明因?yàn)?/span>
2025-07-26 09:48
【總結(jié)】第三節(jié)定積分的計(jì)算法第五章不定積分換元積分法分部積分法定積分?定積分的計(jì)算法第六章二、定積分的分部積分法一、定積分的換元積分法第三節(jié)一、定積分的換元積分法引例求橢圓12222??byax解114SS
2025-07-22 23:06
【總結(jié)】().,,.,.,.上冊(cè)我們研究了一元函數(shù)一個(gè)自變量的函數(shù)及其微分但在許多實(shí)際問(wèn)題中常常會(huì)遇到一個(gè)變量依賴于多個(gè)變量的情形這就提出了多元函數(shù)的概念以及多元函數(shù)的微分和積分問(wèn)題本章將在一元函數(shù)
2025-01-19 10:12
【總結(jié)】第二節(jié)換元積分法從不定積分的定義可以看出,求不定積分的問(wèn)題實(shí)質(zhì)上就是求原函數(shù)的問(wèn)題,而能直接求出原函數(shù)的函數(shù)畢竟是少數(shù)tan??cos?(1)dxxdxxxdxxx???????如本節(jié)介紹了利用換元的思想求下不定積分的兩種方法.第一換元法和第二換元法.(一或第湊一換元法微分法)
2025-07-20 21:13
【總結(jié)】換元積分法?第一類換元積分法?第二類換元積分法?重點(diǎn)是思路與想法問(wèn)題?xdx2cos,2sinCx??解決方法利用復(fù)合函數(shù),設(shè)置中間變量.過(guò)程令xt2?,21dtdx???xdx2cosdtt??cos21Ct??sin21.2sin21Cx??一、第一類換元法
2025-08-05 00:08
【總結(jié)】不定積分的概念與性質(zhì)不定積分的換元積分法不定積分的分部積分法積分表的用法第4章不定積分結(jié)束前頁(yè)結(jié)束后頁(yè)又如d(secx)=secxtanxdx,所以secx是secxtanx的原函數(shù).定義設(shè)f(x)在某區(qū)間上有定義,如果對(duì)該區(qū)間的任意點(diǎn)x
2025-07-18 00:00