【導(dǎo)讀】(a+b)n=C0nan+C1nan-1b+?+Cnnbn這個(gè)公式所表示的定理。式中的Crnan-rbr叫二項(xiàng)展開(kāi)式的通項(xiàng),用Tr+1表示,即通項(xiàng)Tr+1=Crnan-rbr.各項(xiàng)的次數(shù)都等于二項(xiàng)式的冪指數(shù)n,即a與b的指數(shù)的和為n.冪排列,從第一項(xiàng)起,次數(shù)由零逐項(xiàng)增1直到n.二項(xiàng)式的系數(shù)從C0n,C1n,一直到Cn-1n,Cnn.當(dāng)n是偶數(shù)時(shí),中間一項(xiàng)Cn2n取得最大值;=C1n+C3n+C5n+?運(yùn)用二項(xiàng)式定理一定要牢記通項(xiàng)Tr+1=Crnan-rbr,注意(a+b)n與(b+a)n雖然相同,解析Tr+1=Cr5r=2rCr5xr,當(dāng)r=2時(shí),T3=40x2.由已知條件a=41,b=29,則a+b=70.3.若(x-1)4=a0+a1x+a2x2+a3x3+a4x4,則a0+a2+。4.n的展開(kāi)式中x5與x6的系數(shù)相等,則n. 由題意知a10,a11分別是含x10和x11項(xiàng)的系數(shù),所以a10=-C1121,a11=C1021,解通項(xiàng)公式為Tr+1=Crnxn-r3(-3)rx-r3=(-3)rCrnxn-2r3.x-ax26展開(kāi)式的常數(shù)項(xiàng)為60,則常數(shù)a的值為。二項(xiàng)式9的展開(kāi)式中,求:。令x=1,y=-1,得a0-a1+a2-?