freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

中考數(shù)學(xué)-二次函數(shù)-綜合題含詳細(xì)答案-資料下載頁

2025-03-31 07:09本頁面
  

【正文】 形,則直線在軸左側(cè),而點,點,則,即可求解.【詳解】(l),拋物線y=x2-2x的開口向上,頂點A的坐標(biāo)是(1,-1),拋物線的變化情況是:拋物線在對稱軸左側(cè)的部分是下降的,右側(cè)的部分是上升的.(2)①設(shè)拋物線y=x2-2x的“不動點”坐標(biāo)為(t,t).則t=t2-2t,解得t1=0,t2=3.所以,拋物線y=x2-2x的“不動點”的坐標(biāo)是(0,0)、(3,3).②∵新拋物線的頂點B是其“不動點”,∴設(shè)點B的坐標(biāo)為(m,m)∴新拋物線的對稱軸為直線x=m,與x軸的交點為C(m,0)∵四邊形OABC是梯形,∴直線x=m在y軸左側(cè).∵BC與OA不平行∴OC∥AB.又∵點A的坐標(biāo)為(1,一1),點B的坐標(biāo)為(m,m),m=-1.∴新拋物線是由拋物線y=x2-2x向左平移2個單位得到的,∴新拋物線的表達(dá)式是y=(x+1)2-1.【點睛】本題為二次函數(shù)綜合運用題,涉及到二次函數(shù)基本知識、梯形基本性質(zhì),此類新定義題目,通常按照題設(shè)順序,逐次求解即可.13.已知矩形ABCD中,AB=5cm,點P為對角線AC上的一點,且AP=.如圖①,動點M從點A出發(fā),在矩形邊上沿著的方向勻速運動(不包含點C).設(shè)動點M的運動時間為t(s),的面積為S(cm178。),S與t的函數(shù)關(guān)系如圖②所示:(1)直接寫出動點M的運動速度為 ,BC的長度為 。(2)如圖③,動點M重新從點A出發(fā),在矩形邊上,另一個動點N從點D出發(fā),在矩形邊上沿著的方向勻速運動,、N經(jīng)過時間在線段BC上相遇(不包含點C),動點M、N相遇后立即停止運動,記此時的面積為.①求動點N運動速度的取值范圍。②,求出的最大值并確定運動速度時間的值;若不存在,請說明理由. 【答案】(1)2,10;(2)①;②當(dāng)時,取最大值.【解析】【分析】(1)由題意可知圖像中0~,M在AB上運動,求出速度,~,M在BC上運動,求出BC長度;(2)①分別求出在C點相遇和在B點相遇時的速度,取中間速度,注意C點相遇時的速度不能取等于;②過M點做MH⊥AC,則 得到S1,同時利用=15,得到S2,再得到關(guān)于x的二次函數(shù),利用二次函數(shù)性質(zhì)求得最大值【詳解】(1)5247。=2;()2=10 (2)①解:在C點相遇得到方程在B點相遇得到方程 ∴ 解得 ∵在邊BC上相遇,且不包含C點 ∴②如下圖 =15過M點做MH⊥AC,則 ∴ ∴ = = 因為,所以當(dāng)時,取最大值.【點睛】本題重點考查動點問題,二次函數(shù)的應(yīng)用,求不規(guī)則圖形的面積等知識點,第一問關(guān)鍵能夠從圖像中得到信息,第二問第一小問關(guān)鍵在理清楚運動過程,第二小問關(guān)鍵在能夠用x表示出S1和S214.如圖,已知二次函數(shù)y=ax2+bx+3的圖象交x軸于點A(1,0),B(3,0),交y軸于點C.(1)求這個二次函數(shù)的表達(dá)式;(2)點P是直線BC下方拋物線上的一動點,求△BCP面積的最大值;(3)直線x=m分別交直線BC和拋物線于點M,N,當(dāng)△BMN是等腰三角形時,直接寫出m的值.【答案】(1)這個二次函數(shù)的表達(dá)式是y=x2﹣4x+3;(2)S△BCP最大=;(3)當(dāng)△BMN是等腰三角形時,m的值為,﹣,1,2.【解析】分析:(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)根據(jù)平行于y軸直線上兩點間的距離是較大的縱坐標(biāo)減較小的縱坐標(biāo),可得PE的長,根據(jù)面積的和差,可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得答案;(3)根據(jù)等腰三角形的定義,可得關(guān)于m的方程,根據(jù)解方程,可得答案.詳解:(1)將A(1,0),B(3,0)代入函數(shù)解析式,得,解得,這個二次函數(shù)的表達(dá)式是y=x24x+3;(2)當(dāng)x=0時,y=3,即點C(0,3),設(shè)BC的表達(dá)式為y=kx+b,將點B(3,0)點C(0,3)代入函數(shù)解析式,得,解這個方程組,得 直線BC的解析是為y=x+3,過點P作PE∥y軸,交直線BC于點E(t,t+3),PE=t+3(t24t+3)=t2+3t,∴S△BCP=S△BPE+SCPE=(t2+3t)3=(t)2+,∵<0,∴當(dāng)t=時,S△BCP最大=.(3)M(m,m+3),N(m,m24m+3)MN=m23m,BM=|m3|,當(dāng)MN=BM時,①m23m=(m3),解得m=,②m23m=(m3),解得m=當(dāng)BN=MN時,∠NBM=∠BMN=45176。,m24m+3=0,解得m=1或m=3(舍)當(dāng)BM=BN時,∠BMN=∠BNM=45176。,(m24m+3)=m+3,解得m=2或m=3(舍),當(dāng)△BMN是等腰三角形時,m的值為,,1,2.點睛:本題考查了二次函數(shù)綜合題,解(1)的關(guān)鍵是待定系數(shù)法;解(2)的關(guān)鍵是利用面積的和差得出二次函數(shù),又利用了二次函數(shù)的性質(zhì),解(3)的關(guān)鍵是利用等腰三角形的定義得出關(guān)于m的方程,要分類討論,以防遺漏.15.已知二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過A(0,3),B(﹣4,﹣)兩點.(1)求b,c的值.(2)二次函數(shù)y=﹣x2+bx+c的圖象與x軸是否有公共點,求公共點的坐標(biāo);若沒有,請說明情況.【答案】(1);(2)公共點的坐標(biāo)是(﹣2,0)或(8,0).【解析】【分析】(1)把點A、B的坐標(biāo)分別代入函數(shù)解析式求得b、c的值;(2)利用根的判別式進(jìn)行判斷該函數(shù)圖象是否與x軸有交點,由題意得到方程﹣+3=0,通過解該方程求得x的值即為拋物線與x軸交點橫坐標(biāo).【詳解】(1)把A(0,3),B(﹣4,﹣)分別代入y=﹣x2+bx+c,得,解得;(2)由(1)可得,該拋物線解析式為:y=﹣x2+x+3,△=()2﹣4(﹣)3=>0,所以二次函數(shù)y=﹣x2+bx+c的圖象與x軸有公共點,∵﹣x2+x+3=0的解為:x1=﹣2,x2=8,∴公共點的坐標(biāo)是(﹣2,0)或(8,0).【點睛】本題考查了拋物線與x軸的交點,二次函數(shù)圖象上點的坐標(biāo)特征.注意拋物線解析式與一元二次方程間的轉(zhuǎn)化關(guān)系.
點擊復(fù)制文檔內(nèi)容
法律信息相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1