【總結(jié)】含參數(shù)的一元二次不等式的解法解含參數(shù)的一元二次不等式,通常情況下,均需分類討論,那么如何討論呢?對含參一元二次不等式常用的分類方法有三種:一、按項的系數(shù)的符號分類,即;例1解不等式:分析:本題二次項系數(shù)含有參數(shù),,故只需對二次項系數(shù)進行分類討論。解:∵解得方程兩根∴當時,解集為當時,不等式為,解集為當時,解集為例2
2025-04-04 05:10
【總結(jié)】不等式解題漫談一、活用倒數(shù)法則巧作不等變換——不等式的性質(zhì)和應用不等式的性質(zhì)和運算法則有許多,如對稱性,傳遞性,,尤其是不等變換有很大的優(yōu)越性.倒數(shù)法則:若ab0,則ab與1.分析:當a1時,原不等式等價于:1-a,即&
2025-04-04 05:05
【總結(jié)】解不等式高考要求不等式要求層次重難點一元二次不等式C解一元二次不等式例題精講板塊一:解一元二次不等式(一)知識內(nèi)容1.含有一個未知數(shù),且未知數(shù)的最高次數(shù)為的整式不等式,叫做一元二次不等式.一元二次不等式的解集,一元二次方程的根及二次函數(shù)圖象之間的關(guān)系如下表(以為例):判別式
2025-07-24 02:03
【總結(jié)】高中數(shù)學不等式練習題 一.選擇題(共16小題)1.若a>b>0,且ab=1,則下列不等式成立的是( ?。〢.a(chǎn)+<<log2(a+b)) B.<log2(a+b)<a+C.a(chǎn)+<log2(a+b)< D.log2(a+b))<a+<2.設(shè)x、y、z為正數(shù),且2x=3y=5z,則( ?。〢.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x
【總結(jié)】高中數(shù)學模塊教學選修系列4《不等式選講》專題課例《柯西不等式》主講人:山東師范大學附屬中學史宏偉數(shù)學是智能的一種形式,利用這種形式,我們可以把現(xiàn)象世界中的種種對象,置之于數(shù)量概念的控制之下。
2025-08-05 01:57
【總結(jié)】第一篇:高中數(shù)學知識點:不等式的證明及應用 不等式的證明及應用 知識要點: 1.不等式證明的基本方法: ìa-b0?ab ?(1)比較法:ía-b=0?a=b ?a-b0?ab? ...
2024-11-06 18:11
【總結(jié)】9學而思教育比較大小典例分析【例1】若,,則在下列四個選項中,較大的是()A.B.C.D.【例2】將,,按從大到小的順序排列應該是.【例3】若,,則滿足()A. B. C. D.
2025-04-04 04:00
【總結(jié)】第一篇:2012高中數(shù)學單元訓練不等式的證明(二) 課時訓練37不等式的證明 (二)【說明】本試卷滿分100分,、選擇題(每小題6分,共42分) a2b 2+<x<1,a、b為正常數(shù),的最小值...
2024-11-05 06:07
【總結(jié)】基本不等式的證明1教學目標知識與技能.,會用多種方法證明基本不等式.,并掌握基本不等式中取等號的條件是:當且僅當這兩個數(shù)相等[過程與方法情感態(tài)度與價值觀教學重難點
2024-12-05 09:29
【總結(jié)】第一篇:高中數(shù)學必修五不等關(guān)系與不等式教案 第三章不等式 必修5不等關(guān)系與不等式 一、教學目標 ,讓學生感受到現(xiàn)實生活中存在著大量的不等關(guān)系; (組)產(chǎn)生的實際背景的前提下,學習不等式的相關(guān)...
2024-10-28 17:51
【總結(jié)】人教版高中數(shù)學選修4-5(不等式)課后習題答案(截取自教師用書)(1)14
2025-07-22 18:43
【總結(jié)】專題基本不等式編者:高成龍專題基本不等式【一】基礎(chǔ)知識基本不等式:(1)基本不等式成立的條件:;(2)等號成立的條件:當且僅當時取等號.(1);(2);【二】例題分析【模塊1】“1”的巧妙替換【例1】已知,且,則的最小值為
2025-08-05 19:27
【總結(jié)】不等式和絕對值不等式第一講.,數(shù)學研究的重要內(nèi)容不等式是式表示這樣的不等關(guān)系人們常用不等上存在的不等關(guān)系來描述客觀事物在數(shù)量輕與重矮、人們常用長與短、高與現(xiàn)實中,,??????不等式一不等式的基本性質(zhì)1:,,.的大小位置關(guān)系來規(guī)定實數(shù)利用數(shù)軸上的點的左右因此可以對應數(shù)軸上的點與實數(shù)一一道知我們實數(shù)的大小關(guān)系研究不等式的出
2024-11-18 12:12
【總結(jié)】第一篇:高中數(shù)學復習專題講座關(guān)于不等式證明的常用方法 高考要求 不等式的證明,方法靈活多樣,它可以和很多內(nèi)容結(jié)合高考解答題中,常滲透不等式證明的內(nèi)容,純不等式的證明,歷來是高中數(shù)學中的一個難點,本...
2024-11-09 12:32
【總結(jié)】如果a,b∈R,那么a2+b2≥2ab(當且僅當a=b時取“=”)證明:222)(2baabba??????????????0)(0)(22babababa時,當時,當abba222??1.定理適用范圍:Rba?,2.取“=”的條件:ba?定理:
2024-11-18 08:48