freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

蘇科版數學九下二次函數與一元二次方程word教學實踐報告(編輯修改稿)

2025-01-13 21:15 本頁面
 

【文章內容簡介】 等的實數根得到 拋物線與 x軸有一個交點 —— 相切。 3. △﹤ 0 得到一元二次方程 ax2+bx+c=0 沒有實數根得到 拋物線與 x軸沒有交點 —— 相離。 探究 2. 若一元二次方程 ax2+bx+c=0 的兩個根 是 x x2,則由根與系數的關系得: x1+x2= b / a x1x2=c/ a 若拋物線 y=ax2+bx+c 與 x 軸的兩個交點坐標分別是 A( x1, 0 ), B( x2, 0 ),則是否有同樣的結論呢? 結論 3. 若拋物線 y=ax2+bx+c 與 x軸的兩個交點坐標分別是 A( x1, 0 ), B( x2, 0 ), 則 x1+x2= b/ a ,x1x2=c/ a,先讓學生通過事例獲得感受。 四、基礎訓練 1. 判斷下列各拋物線是否與 x軸相交,如果相交,求出交點的坐標。 ( 1) y=6x22x+1 ( 2) y=15x2+14x+8 ( 3) y=x24x+4 2. 已知拋物線 y=x26x+a 的頂點在 x軸上,則 a= ;若拋物線與 x軸有兩個交點,則 a 的范圍是 ; 3. 已知拋物線 y=x23x+a+1 與 x軸最多只有一個交點,則 a 的范圍是 。 4. 已知拋物線 y=x2+px+q 與 x軸的
點擊復制文檔內容
教學課件相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1