【總結(jié)】基本不等式說(shuō)課稿 基本不等式是主要應(yīng)用于求某些函數(shù)的最值及證明的不等式。以下是小編整理的基本不等式說(shuō)課稿,希望對(duì)大家有幫助! 基本不等式說(shuō)課稿1尊敬的各位考官大家好,我是今天的X號(hào)考生,今天我說(shuō)課...
2024-12-07 02:50
【總結(jié)】......《不等式》的說(shuō)課稿各位領(lǐng)導(dǎo)、老師們大家好:今天我說(shuō)課的內(nèi)容是北師版數(shù)學(xué)高中教材必修五第三章第一二三節(jié),我將從八個(gè)方面(教材、學(xué)情、教學(xué)模式、教學(xué)設(shè)計(jì)、板書、評(píng)價(jià)、開發(fā)、得失,出示ppt)說(shuō)我對(duì)此課的思考和
2025-04-17 00:22
【總結(jié)】:學(xué)案(第一課時(shí))一、學(xué)習(xí)目標(biāo)基本不等式:適用條件:二、典型例題例1.(1)已知正數(shù)滿足,則的最小值是.(2)已知正數(shù)滿足,則的最大值是.變式:已知,則的最小值是.(3)在下列條件中,最小值為2的是()A.()B.()
2025-08-17 05:25
【總結(jié)】知識(shí)回顧揭示課題問(wèn)題1實(shí)數(shù)與數(shù)軸上的點(diǎn)是如何對(duì)應(yīng)的?問(wèn)題2在數(shù)軸上表示出與實(shí)數(shù)-2、-1、0、2、4對(duì)應(yīng)的點(diǎn).問(wèn)題3如何利用數(shù)軸上的點(diǎn)比較這五個(gè)數(shù)的大?。恐R(shí)回顧揭示課題實(shí)數(shù)和數(shù)軸上的點(diǎn)一一對(duì)應(yīng).?dāng)?shù)軸上的任意兩點(diǎn)中,右邊的點(diǎn)對(duì)應(yīng)的實(shí)數(shù)比左邊的點(diǎn)對(duì)應(yīng)的實(shí)數(shù)大
2024-11-17 12:59
【總結(jié)】式的基本性質(zhì)等式基本性質(zhì)1:等式的兩邊都加上(或減去)同一個(gè)整式,等式仍舊成立等式基本性質(zhì)2:等式的兩邊都乘以(或除以)同一個(gè)不為0的數(shù),等式仍舊成立知識(shí)回顧:等式的基本性質(zhì):做一做用“<”或“>”號(hào)填空:(1)74;(3)7+(-3)
【總結(jié)】:2baab??復(fù)習(xí)引入1.基本不等式:;)(2,,)1(22”號(hào)時(shí)取“當(dāng)當(dāng)且僅那么如果?????baabbaRba復(fù)習(xí)引入1.基本不等式:;)(2,,)1(22”號(hào)時(shí)取“當(dāng)當(dāng)且僅那么如果?????baabbaRba;)(2,,)2
2025-07-25 15:38
【總結(jié)】2abab??(0,0)ab??學(xué)習(xí)目標(biāo)?會(huì)用基本不等式證明一些簡(jiǎn)單不等式;?會(huì)用基本不等式解決簡(jiǎn)單的最值問(wèn)題.(重點(diǎn))如果a、b?R,那么a2+b2?2ab(當(dāng)且僅當(dāng)a=b時(shí)取“=”號(hào))如果a,b是正數(shù),那么(當(dāng)且僅當(dāng)a=b
2024-11-12 17:13
【總結(jié)】第八節(jié)基本不等式考綱點(diǎn)擊.(小)值問(wèn)題.熱點(diǎn)提示,兼顧考查代數(shù)式變形、化簡(jiǎn)能力,注意“一正、二定、三相等”的條件.,可出選擇題、填空題,也可出以函數(shù)為載體的解答題.,與其他知識(shí)結(jié)合在一起來(lái)考查基本不等式,證明不會(huì)太難.但題型多樣,涉及面廣.基本不等式不等式成立的條件等號(hào)成立的條件
2024-11-09 04:10
【總結(jié)】基本不等式學(xué)習(xí)目標(biāo)?學(xué)習(xí)目標(biāo):理解一元二次不等式的概念及其與二次函數(shù)、一元二次方程的關(guān)系。初步樹立“數(shù)形結(jié)合次函數(shù)、一元二次方程的關(guān)系。?學(xué)法指導(dǎo):發(fā)現(xiàn)、討論法;數(shù)形結(jié)合?!钡挠^念。掌握一元二次不等式的解法及步驟。?學(xué)習(xí)重點(diǎn)、難點(diǎn):一元二次不等式、二次函數(shù)、一元二次方程的關(guān)系;一元二次不等式的解法及
2024-11-23 11:40
【總結(jié)】第一篇:基本不等式教案 基本不等式 【教學(xué)目標(biāo)】 1、掌握基本不等式,能正確應(yīng)用基本不等式的方法解決最值問(wèn)題 2、用易錯(cuò)問(wèn)題引入要研究的課題,通過(guò)實(shí)踐讓同學(xué)對(duì)基本不等式應(yīng)用的二個(gè)條件有進(jìn)一步的...
2024-10-28 11:37
【總結(jié)】2abab??§:ICM2022會(huì)標(biāo)趙爽:弦圖ADBCEFGHab22ab?不等式:一般地,對(duì)于任意實(shí)數(shù)a、b,我們有當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。222abab??新授:ABCDE(FGH)ab基本不等式:(
2025-08-04 15:14
【總結(jié)】基本不等式【考綱要求】,理解基本不等式的幾何意義,并掌握定理中的不等號(hào)“≥”取等號(hào)的條件是:當(dāng)且僅當(dāng)這兩個(gè)數(shù)相等;(?。┲祮?wèn)題.;能夠解決一些簡(jiǎn)單的實(shí)際問(wèn)題【知識(shí)網(wǎng)絡(luò)】基本不等式重要不等式最大(小)值問(wèn)題基本不等式基本不等式的應(yīng)用【考點(diǎn)梳理】考點(diǎn)一:重要不等式及幾何意義1.重要不等式:如果,那么(當(dāng)且僅當(dāng)時(shí)取等號(hào)“=”).2.基
2025-08-05 04:42
【總結(jié)】年級(jí)科目九年級(jí)數(shù)學(xué)課題二次函數(shù)主備人審核人總課時(shí)數(shù)教學(xué)目標(biāo),熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍重點(diǎn)難點(diǎn)教學(xué)重點(diǎn):對(duì)二次函數(shù)概念的理解教學(xué)難點(diǎn):由實(shí)際問(wèn)題確定二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍教學(xué)過(guò)
2024-12-08 21:04
【總結(jié)】......基本不等式及應(yīng)用一、考綱要求:.2.會(huì)用基本不等式解決簡(jiǎn)單的最大(小)值問(wèn)題.3.了解證明不等式的基本方法——綜合法.二、基本不等式基本不等式不等式成立的條件等號(hào)成立的條件≤a0,
2025-05-13 23:12
【總結(jié)】基本不等式題型歸納【重點(diǎn)知識(shí)梳理】1.基本不等式:(1)基本不等式成立的條件:,.(2)等號(hào)成立的條件:當(dāng)且僅當(dāng)時(shí),等號(hào)成立.2.幾個(gè)重要的不等式:(1)();(2)();(3)();(4)().3.算術(shù)平均數(shù)與幾何平均數(shù)設(shè),,則的算術(shù)平均數(shù)為,幾何平均數(shù)為,基本不等式可敘述為兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù).4.利用基本不等式求最值問(wèn)題
2025-03-25 00:14