【總結】直線的點斜式方程一、教材分析直線方程的點斜式給出了根據(jù)已知一個點和斜率求直線方程的方法和途徑.在求直線的方程中,直線方程的點斜式是基本的,直線方程的斜截式、兩點式都是由點斜式推出的.從一次函數(shù)y=kx+b(k≠0)引入,自然地過渡到本節(jié)課想要解決的問題——求直線的方程問題.在引入過程中,要讓學生弄清直線與方程的一一對應關系,理解研究
2024-12-09 03:39
【總結】第四章圓與方程一、選擇題1.圓C1:x2+y2+2x+8y-8=0與圓C2:x2+y2-4x+4y-2=0的位置關系是().A.相交B.外切C.內切D.相離2.兩圓x2+y2-4x+2y+1=0與x2+y2+4x-4y-1=0的公共切線有().A.1條B.2條C.3條D.4條3.若圓C
2025-04-04 05:09
【總結】圓的方程同步測試本試卷分第Ⅰ卷和第Ⅱ卷兩部分.共150分.第Ⅰ卷(選擇題,共50分)一、選擇題:在每小題給出的四個選項中,只有一項是符合題目要求的,請把正確答案的代號填在題后的括號內(每小題5分,共50分).1.方程052422?????mymxyx表示圓的充要條件是()A.
2024-12-02 10:14
【總結】直線與圓的位置關系一、教材分析學生在初中的學習中已了解直線與圓的位置關系,并知道可以利用直線與圓的交點的個數(shù)以及圓心與直線的距離d與半徑r的關系判斷直線與圓的位置關系,但是,在初中學習時,利用圓心與直線的距離d與半徑r的關系判斷直線與圓的位置關系的方法卻以結論性的形式呈現(xiàn).在高一學習了解析幾何以后,要考慮的問題是如何掌握由直線
2024-12-08 02:40
【總結】直線與圓的位置關系【學習目標】1.能根據(jù)給定的直線、圓的方程,判斷直線與圓的位置關系.2.通過直線與圓的位置關系的學習,體會用代數(shù)方法解決幾何問題的思想.3.通過本節(jié)內容的學習,進一步體會到用坐標法解決幾何問題的優(yōu)越性,逐步養(yǎng)成自覺應用坐標法解決幾何問題的習慣.【學習重點】直線與圓的位置關系的幾何圖形及其判斷方法.用坐標法判直線與圓的位置
【總結】4.2直線、圓的位置關系直線與圓的位置關系問題提出t57301p2???????1、點到直線的距離公式,圓的標準方程和一般方程分別是什么?222()()xaybr????22220(40)xyDxEyFDEF????????0022||AxBy
2024-11-18 12:19
【總結】平面與平面垂直的判定一、選擇題1.下列命題中:①兩個相交平面組成的圖形叫做二面角;②異面直線a,b分別和一個二面角的兩個面垂直,則a,b所成的角與這個二面角的平面角相等或互補;③二面角的平面角是從棱上一點出發(fā),分別在兩個面內作射線所成的角的最小角;④二面角的大小與其平面角的頂點在棱上的位置沒有關系.其中正確的是()
2024-12-09 03:42
【總結】直線的兩點式方程一、教材分析本節(jié)課的關鍵是關于兩點式的推導以及斜率k不存在或斜率k=0時對兩點式的討論及變形.直線方程的兩點式可由點斜式導出.若已知兩點恰好在坐標軸上(非原點),則可用兩點式的特例截距式寫出直線的方程.由于由截距式方程可直接確定直線與x軸和y軸的交點的坐標,因此用截距式畫直線比較方便.在解決與截距有關或直線與坐
【總結】棱柱、棱錐、棱臺的結構特征一、選擇題1.下列圖形中,不是三棱柱的展開圖的是()答案:C2.有兩個面平行的多面體不可能是()A.棱柱B.棱錐C.棱臺D.以上都錯解析:選B棱柱、棱臺的上、下底面是平行的,而棱錐的任意兩面均不平行.3.關于棱柱,下列說法正確的是()A.只有兩個面平行
2024-12-09 03:49
【總結】我們能做的只有躲避。在自然災難面前人類是弱小的,問題:一艘輪船在沿直線返回港口的途中,接到氣象臺的臺風預報:臺風中心位于輪船正西70km處,受影響的范圍是半徑長為30km的圓形區(qū)域。已知港口位于臺風中心正北40km處,如果這艘輪船不改變航線,那么它是否會受到臺風的影響
2024-11-17 19:51
【總結】直線與圓的方程的應用問題提出通過直線與圓的方程,可以確定直線與圓、圓和圓的位置關系,對于生產、生活實踐以及平面幾何中與直線和圓有關的問題,我們可以建立直角坐標系,通過直線與圓的方程,將其轉化為代數(shù)問題來解決.對此,我們必須掌握解決問題的基本思想和方法.知識探究:直線與圓的方程在實際生活中的應用問題Ⅰ:一艘輪船在沿
【總結】直線的一般式方程備用習題4x+y+6=0和3x-5y-6=0截得的線段的中點恰好在坐標原點,求這條直線的方程.解:設所求直線的方程為y=kx,由???????,064,yxkxy,得?????????????kkykx46,46又由???????,0653,yx
【總結】直線的一般式方程一、教材分析直線是最基本、最簡單的幾何圖形,它是研究各種運動方向和位置關系的基本工具,它既能為進一步學習作好知識上的必要準備,又能為今后靈活地運用解析幾何的基本思想和方法打好堅實的基礎.直線方程是這一章的重點內容,在學習了直線方程的幾種特殊形式的基礎上,歸納總結出直線方程的一般形式.掌握直線方程的一般形式為用代數(shù)方法研究兩條
【總結】4.圓的一般方程[提出問題]已知圓心(2,3),半徑為2.問題1:寫出圓的標準方程.提示:(x-2)2+(y-3)2=4.問題2:上述方程能否化為二元二次方程的形式?問題3:方程x2+y2-4x-6y+13=0是否表示圓?問題4
2024-11-17 17:04
【總結】第一篇:高中數(shù)學《直線的方程》教案8新人教A版必修2 直線的一般式方程 教學目標 (1)掌握直線方程的一般式Ax+By+C=0(A,B不同時為0)理解直線方程的一般式包含的兩方面的含義:①直線的...
2024-10-26 12:55