【總結(jié)】直線的兩點式方程、直線的一般方式一、選擇題1.平面直角坐標系中,直線x+3y+2=0的斜率為()A.33B.-33C.3D.-3答案:B2.如果ax+by+c=0表示的直線是y軸,則系數(shù)a,b,c滿足條件()A.bc=0B.a(chǎn)≠0C.bc=0且a≠0
2024-12-09 03:39
【總結(jié)】直線的點斜式方程教學設計1、教學內(nèi)容分析?本節(jié)課是《普通高中課程標準實驗教科書數(shù)學必修2》(人教A版)§《直線的點斜式方程》,課時1課時,學生是在學習了直線的傾斜角與斜率,兩點表示斜率公式后引入的新知。主要內(nèi)容為直線的點斜式方程和斜截式方程。2、學生學習情況分析本人所在學校為縣級高中,所授課班級為平行班,學生基礎差,學習主動性較
2025-05-09 22:01
【總結(jié)】直線與平面垂直的性質(zhì)一、教材分析空間中直線與平面之間的位置關(guān)系中,垂直是一種非常重要的位置關(guān)系,它不僅應用較多,而且是空間問題平面化的典范.空間中直線與平面垂直的性質(zhì)定理不僅是由線面關(guān)系轉(zhuǎn)化為線線關(guān)系,而且將垂直關(guān)系轉(zhuǎn)化為平行關(guān)系,因此直線與平面垂直的性質(zhì)定理在立體幾何中有著特殊的地位和作用.本節(jié)重點是在鞏固線線垂直和面面垂直的基礎上,討論直線
2024-12-09 03:42
【總結(jié)】四川省岳池縣第一中學高中數(shù)學必修三學案:3-2-1直線的點斜式方程學習目標、斜截式的形式特點和適用范圍,能利用直線的點斜式、斜截式公式求直線方程,進一步培養(yǎng)學生用代數(shù)方法研究幾何問題的能力.思考,合作探究,通過具體實例,學會用點斜式、斜截式公式求直線方程的方法.3.激情投入,全力以赴,通過體會直線的斜截式方程與一次函數(shù)的關(guān)系,進一步培養(yǎng)
2024-11-28 20:52
【總結(jié)】點到直線的距離【問題設計】:①已知點P(x0,y0)和直線l:Ax+By+C=0,求點P到直線l的距離.你最容易想到的方法是什么?各種做法的優(yōu)缺點是什么?②前面我們是在A、B均不為零的假設下推導出公式的,若A、B中有一個為零,公式是否仍然成立?③回顧證明過程,同學們還有什么發(fā)現(xiàn)嗎?(如何求兩條平行線間的距離)【
2024-12-08 02:40
【總結(jié)】直線與圓的方程的應用課題直線與圓的方程的應用課型新授課學習目標1.理解直線與圓的位置關(guān)系的集中性質(zhì)。2.利用平面直角坐標系解決直線與圓的位置關(guān)系;用坐標法解決幾何問題的步驟;第一步:建立適當?shù)钠矫嬷苯亲鴺讼?,用坐標和方程表示問題中的幾何元素,將平面幾何問題轉(zhuǎn)化為代數(shù)問題;第二步:通過代數(shù)運算,解決代數(shù)問題;
2024-12-08 02:39
【總結(jié)】直線與平面平行的性質(zhì)一、教材分析上節(jié)課已學習了直線與平面平行的判定定理,這節(jié)課將通過例題讓學生體會應用線面平行的性質(zhì)定理的難度,進而明確告訴學生:線面平行的性質(zhì)定理是高考考查的重點,也是最難應用的兩個定理之一.本節(jié)重點是直線與平面平行的性質(zhì)定理的應用.二、教學目標1.知識與技能掌握直線與平面平行的性質(zhì)定理及其應用.
2024-12-08 20:22
【總結(jié)】第二章點、直線、平面之間的位置關(guān)系本章教材分析本章將在前一章整體觀察、認識空間幾何體的基礎上,以長方體為載體,使學生在直觀感知的基礎上,認識空間中點、直線、平面之間的位置關(guān)系;通過大量圖形的觀察、實驗和說理,使學生進一步了解平行、垂直關(guān)系的基本性質(zhì)以及判定方法,學會準確地使用數(shù)學語言表述幾何對象的位置關(guān)系,初步體驗公理化思想,培養(yǎng)邏輯思維能力,并
2024-12-08 07:06
【總結(jié)】圓的標準方程一、選擇題1.已知點P(3,2)和圓的方程(x-2)2+(y-3)2=4,則它們的位置關(guān)系為()A.在圓心B.在圓上C.在圓內(nèi)D.在圓外解析:選C∵(3-2)2+(2-3)2=2<4,∴點P在圓內(nèi).2.圓(x+1)2+(y-2)2=4的圓心、半徑是()
2024-12-08 07:03
【總結(jié)】直線的點斜式方程復習.,),,(),,(2.122211的斜率那么直線如果已知直線上兩點PQxxyxQyxP?的定義及其取值范圍;???xyO),(22yxQ),(11yxP直線的傾斜角的取值范圍是:[00,1800)B?tan???????xyk1212xxyy
2024-11-18 12:11
【總結(jié)】兩條直線的交點坐標一、教材分析本節(jié)課從知識內(nèi)容來說并不是很難,但從解析幾何的特點看,就需要培養(yǎng)學生如何利用直線方程來討論其特點,得到直線交點,以及交點個數(shù)對應于直線在平面內(nèi)的相對位置關(guān)系.在教學過程中應該圍繞兩直線一般方程的系數(shù)的變化來揭示兩直線方程聯(lián)立解的情況,從而判定兩直線的位置特點,設置平面內(nèi)任意兩直線方程組解的情況的討論,為課題引入
2024-12-08 02:41
【總結(jié)】直線與方程(1)點斜式,斜截式??2,0,且斜率是3的直線方程為36yx??l過點??2,1?,其斜率是直線122yx???的斜率的相反數(shù),則直線l的方程是25yx??l的斜率是-3,有y軸上的截距是-3的直線方程是33yx???l的方程為1
2024-12-05 09:21
【總結(jié)】直線與圓的位置關(guān)系一、教材分析學生在初中的學習中已了解直線與圓的位置關(guān)系,并知道可以利用直線與圓的交點的個數(shù)以及圓心與直線的距離d與半徑r的關(guān)系判斷直線與圓的位置關(guān)系,但是,在初中學習時,利用圓心與直線的距離d與半徑r的關(guān)系判斷直線與圓的位置關(guān)系的方法卻以結(jié)論性的形式呈現(xiàn).在高一學習了解析幾何以后,要考慮的問題是如何掌握由直線
【總結(jié)】點、線、面典例解析平面的基本性質(zhì)與推論主要有:公理1、公理2和公理3、公理4及三個推論,它們是確定平面、判定直線或交線的基本依據(jù).為方便記憶,公理1可以簡化成“兩點定線”,它是判定一條直線是否在某個平面內(nèi)的依據(jù)(只要在直線上找出兩個點在該平面內(nèi)即可);公理2可簡化為“窺一點知全線”,它是尋找兩個平面交線的依據(jù);公理3可簡化成“三點定面”(
2024-12-09 03:44
【總結(jié)】兩點間的距離一、教材分析距離概念,在日常生活中經(jīng)常遇到,學生在初中平面幾何中已經(jīng)學習了兩點間的距離、點到直線的距離、兩條平行線間的距離的概念,到高一立體幾何中又學習了異面直線距離、點到平面的距離、兩個平面間的距離等.其基礎是兩點間的距離,許多距離的計算都轉(zhuǎn)化為兩點間的距離.在平面直角坐標系中任意兩點間的距離是解析幾何重要的基本概念和公式.