【總結】第一篇:證明不等式的幾種常用方法 證明不等式的幾種常用方法 摘要:不等式由于結構形式的多樣化化,證明方式也是靈活多樣,但都是圍繞著比較法、綜合法、、:不等式證明;比較法;綜合法;分析法 引言:不...
2024-10-29 06:39
【總結】第一篇:數(shù)學所有不等式放縮技巧及證明方法 高考數(shù)學所有不等式放縮技巧及證明方法 一、裂項放縮 例1.(1)求 例2.(1)求證:1+(2)求證: /7?4kk=1n22-1的值;(2)求證:...
2024-10-28 03:50
【總結】第一篇:構造函數(shù)法證明不等式的八種方法 構造函數(shù)法證明不等式的八種方法 利用導數(shù)研究函數(shù)的單調性極值和最值,再由單調性來證明不等式是函數(shù)、導數(shù)、不等式綜合中的一個難點,也是近幾年高考的熱點。 解...
2024-10-28 04:52
【總結】第一篇:構造法與放縮法在不等式證明中的運用 構造法與放縮法在不等式證明中的運用 例1:設函數(shù)f(x)=x-(x+1)ln(x+1)(x-1).(1)求f(x)的單調區(qū)間; (2)證明:當nm...
2024-10-28 03:31
【總結】不等式的證明復習?不等式證明的常用方法:?比較法、綜合法、分析法反證法先假設要證明的命題不成立,以此為出發(fā)點,結合已知條件,應用公理、定義、定理、性質等,進行正確的推理,得到矛盾,說明假設不正確,從而間接說明原命題成立的方法。1.xy02.1x12.yxy
2025-08-01 17:41
【總結】精品資源證明不等式的幾種常用方法證明不等式除了教材中介紹的三種常用方法,即比較法、綜合法和分析法外,在不等式證明中,不僅要用比較法、綜合法和分析法,根據(jù)有些不等式的結構,恰當?shù)剡\用反證法、換元法或放縮法還可以化難為易.下面幾種方法在證明不等式時也經(jīng)常使用.一、反證法如果從正面直接證明,有些問題確實相當困難,容易陷入多個元素的重圍之中,而難以自拔,此時可考慮用間接法予以證明,反證法
2025-04-08 04:10
【總結】第一篇:用放縮法證明與數(shù)列和有關的不等式 用放縮法證明與數(shù)列和有關的不等式 湖北省天門中學薛德斌 數(shù)列與不等式的綜合問題常常出現(xiàn)在高考的壓軸題中,是歷年高考命題的熱點,這類問題能有效地考查學生綜...
2024-10-27 22:27
【總結】第一篇:淺談用放縮法證明不等式 淺談用放縮法證明不等式 山東省許曄 不等式的證明是中學數(shù)學教學的重點,也是學生接受時感到頭痛的難點。不等式的證明方法很多。如:比較法(比差商法)、分析法、綜合法、...
2024-10-28 04:08
【總結】1.均值不等式法例1設求證例2已知函數(shù),若,且在[0,1]上的最小值為,求證:例3求證.例4已知,,求證:≤1.2.利用有用結論例5求證例6已知函數(shù)求證:對任意且恒成立。例7已知用數(shù)學歸納法證明;對對都成立,證明(無理數(shù))例8已知不等式。表示不超過的最大整數(shù)。設正數(shù)數(shù)列滿足:求證再如:設函數(shù)。(Ⅰ)
2025-08-11 11:16
【總結】存檔編號贛南師范學院學士學位論文放縮法在不等式證明中的應用教學學院數(shù)學與計算機科學學院屆別2022屆專
2025-01-06 06:15
【總結】利用放縮法證明數(shù)列型不等式壓軸題摘要:縱觀近幾年高考數(shù)學卷,壓軸題很多是數(shù)列型不等式,其中通常需要證明數(shù)列型不等式,它不但可以考查證明不等式和數(shù)列的各種方法,而且還可以綜合考查其它多種數(shù)學思想方法,充分體現(xiàn)了能力立意的高考命題原則。處理數(shù)列型不等式最重要要的方法為放縮法。放縮法的本質是基于最初等的四則運算,利用不等式的傳遞性,其優(yōu)點是能迅速地化繁為簡,化難為易,達到事半功倍的效
2025-03-24 12:45
【總結】放縮法的常見技巧(1)舍掉(或加進)一些項(2)在分式中放大或縮小分子或分母。(3)應用基本不等式放縮(例如均值不等式)。(4)應用函數(shù)的單調性進行放縮(5)根據(jù)題目條件進行放縮。(6)構造等比數(shù)列進行放縮。(7)構造裂項條件進行放縮。(8)利用函數(shù)切線、割線逼近進行放縮。使用放縮法的注意事項(1)放縮的方向要一致。(2)放與縮要適度。(3)很多時候只對數(shù)列
2025-06-26 16:31
【總結】第六章不等式第二節(jié)不等式放縮技巧十法證明不等式,其基本方法參閱(下冊):不等式的放縮技巧。證明數(shù)列型不等式,因其思維跨度大、構造性強,需要有較高的放縮技巧而充滿思考性和挑戰(zhàn)性,能全面而綜合地考查學生的潛能與后繼學習能力,因而成為高考壓軸題及各級各類競賽試題命題的極好素材。這類問題的求解策略往往是:通過多角度觀察所給
2025-06-24 19:24
【總結】淺談放縮法在不等式證明中的應用 篇一:《放縮法在不等式的應用》論文 放縮法在不等式的應用 所謂放縮法確實是利用不等式的傳遞性,對照證標題的進展合情合理的放大和縮小的過程,在使用放縮法證題時要...
2025-03-26 01:26
【總結】第一篇:放縮法證明“數(shù)列+不等式”問題的兩條途徑 放縮法證明“數(shù)列+不等式”問題的兩條途徑 數(shù)列與不等式的綜合問題常常出現(xiàn)在高考的壓軸題中,是歷年命題的熱點,解決這類問題常常用到放縮法。用放縮法解...
2024-10-29 04:45