【文章內(nèi)容簡介】
2???12)?[1?22x?32x???(n?1)2x?a2?n2x](x?0時取等號)?n?[1?22x?32x???(n?1)2x?a?n2x](?0?a?1),得證!例11 已經(jīng)明白a1?1,an?1?(1?11)a?.(I)用數(shù)學歸納法證明an?2(n?2);(II)對n2nn?n2(05年遼寧卷第22題) ln(1?x)?x對x?0都成立,證明an?e2(無理數(shù)e??)解析 (II)結合第(I)征詢結論及所給題設條件ln(1?x)?x(x?0)的構造特征,可得放縮思路:an?1?(1?1111?)a?lna?ln(1??)?lnan? nn?1n2?n2nn2?n2n1111?lnan?2?n。因而lnan?1?lnan?2?n,n?n2n?n2n?1i?1?即lnan(lnai?1?lnai)??i?1n?111?()n?1111112(2?i)?lnan?lna1?1???2??n?2.nn2i?i21?2?lna1?2?an?e2.?0)為一有用結論,能夠起到提示思路與探究放縮方向的注:標題所給條件ln(1?x)?x(x作用;因而,此題還可用結論2n?n(n?1)(n?2)來放縮:111)(an?1)? )an??an?1?1?(1?n(n?1)n(n?1)n(n?1)11ln(an?1?1)?ln(an?1)?ln(1?)?.n(n?1)n(n?1)an?1?(1???[ln(ai?1?1)?ln(ai?1)]??i?2i?2n?1n?111?ln(an?1)?ln(a2?1)?1??1,i(i?1)n即ln(an?1)?1?ln3?an?3e?1?e2.1111?????[log2n],n?N?,n?2.[log2n]表示不超過log2n 的最23n2例12 已經(jīng)明白不等式大整數(shù)。設正數(shù)數(shù)列{an}滿足:a1?b(b?0),an?nan?1,n?2.n?an?1求證an?2b,n?3.(05年湖北卷第(22)題)2?b[log2n]簡析 當n?2時an?nan?1?1?n?an?1?1?1,即n?an?1anan?1an?1nnn111111)??. ????(?akak?1anan?1nk?2k?2k因而當n?3時有1?1?1[log2n]?an?ana122b.2?b[log2n]篇二:放縮法在不等式證明中的應用放縮法在不等式證明中的應用摘要放縮法是不等式證明中一種特別精細、特別巧妙的證明方法,但是,如何快速、有效地進展放縮這是我們數(shù)學學習者必需要掌握的內(nèi)容,以及如何靈敏、適度地進展這是我們研究學習的重難點.關鍵詞:放縮法。不等式 。證明 。方式 。目的 。適度AbstractScaling law is the inequalities in a very sophisticated and very clever that way, but how quickly, efficiently scaling this is our mathematics learners have to master the content, and how flexible, appropriate manner that is The weight of learning difficulties.Key words: Scaling law。Inequality。Prove。Manner。Target。Moderation目 錄第一章 引言1頁第二章 不等式的根本性質(zhì)及其應用18