【總結(jié)】1.3正弦定理、余弦定理的應(yīng)用學(xué)習(xí)目標(biāo)預(yù)習(xí)導(dǎo)學(xué)典例精析欄目鏈接情景導(dǎo)入2020年10月12日,中國宣布了自己的探月計劃:中國將在2020年把“嫦娥一號”繞月衛(wèi)星送入太空,2020年實現(xiàn)發(fā)射軟著陸器登陸月球.路透社報道:中國將在2024年把人送上月球.
2024-11-18 08:11
【總結(jié)】不等關(guān)系課時目標(biāo).,并能運用這些性質(zhì)解決有關(guān)問題.1.比較實數(shù)a,b的大小(1)文字敘述如果a-b是正數(shù),那么a____b;如果a-b等于____,那么a=b;如果a-b是負數(shù),那么a____b,反之也成立.(2)符號表示a-b0?a____b;a-
2024-12-05 00:28
【總結(jié)】正、余弦定理應(yīng)用(2)例1.如果△A1B1C1的三個內(nèi)角的余弦值分別等于△A2B2C2的三個內(nèi)角的正弦值,則()(A)△A1B1C1和△A2B2C2都是銳角三角形(B)△A1B1C1和△A2B2C2都是鈍角三角形(C)△A1B1C1是鈍角三角形,△A2B2C2是銳角三角形(D)△A1
2024-11-18 08:48
【總結(jié)】高中數(shù)學(xué)正弦定理教案教學(xué)分析 本節(jié)內(nèi)容是正弦定理教學(xué)的第一節(jié)課,其主要任務(wù)是引入并證明正弦定理.做好正弦定理的教學(xué),不僅能復(fù)習(xí)鞏固舊知識,使學(xué)生掌握新的有用的知識,體會聯(lián)系、發(fā)展等辯證觀點,而且能培養(yǎng)學(xué)生的應(yīng)用意識和實踐操作能力,以及提出問題、解決問題等研究性學(xué)習(xí)的能力.在初中學(xué)習(xí)過關(guān)于任意三角形中大邊對大角、小邊對小角的邊角關(guān)系,本節(jié)內(nèi)容是處理三角形中的邊角關(guān)系,
2025-04-17 12:25
【總結(jié)】第一篇:高中數(shù)學(xué):《正弦定理》學(xué)案(湘教版必修4) 正弦定理學(xué)案 一、預(yù)習(xí)問題: 1、在直角三角形中,由三角形內(nèi)角和定理、勾股定理、銳角三角函數(shù),可以由已知的邊和角求出未知的邊和角。那么斜三角形...
2024-10-07 01:53
【總結(jié)】正弦定理和余弦定理沈陽二中數(shù)學(xué)組高中數(shù)學(xué)⑤B版正弦定理第一節(jié)思考:在直角三角形中,“邊”與“角”的關(guān)系Rt中ABC?222abc??sin,sinacAbcB??sinsinabAB?sin1C?sinsinsinabc
2024-11-17 11:59
【總結(jié)】正弦定理、余弦定理的應(yīng)用(1)教學(xué)目標(biāo):1.能熟練應(yīng)用正弦、余弦定理及相關(guān)公式解決三角形中的有關(guān)問題;2.能把一些簡單的實際問題轉(zhuǎn)化為數(shù)學(xué)問題,并能應(yīng)用正弦、余弦定理及相關(guān)的三角公式解決這些問題;3.通過復(fù)習(xí)、小結(jié),使學(xué)生牢固掌握兩個定理,應(yīng)用自如.教學(xué)重、難點:能熟練應(yīng)用正弦、余弦定理及相關(guān)公式解決三角形的有關(guān)問
2024-11-19 21:43
【總結(jié)】BCA創(chuàng)設(shè)情境BABCAC??.||,||ACbBCaBA,求夾角是,如果???數(shù)學(xué)理論CabbacBacacbAbccbacos2cos2cos2222222222?????????數(shù)學(xué)理論.2cos,2cos,2cos22222
2024-11-17 23:32
【總結(jié)】第一課時正弦定理(1)一.學(xué)習(xí)目標(biāo):1.了解正弦定理推導(dǎo)過程;2.掌握正弦定理內(nèi)容;3.會利用正弦定理求解簡單斜三角形邊角問題。二.學(xué)習(xí)重難點:重點:正弦定理證明及應(yīng)用;難點:正弦定理的證明,正弦定理在解三角形時應(yīng)用思路.三.自主預(yù)習(xí):1.一般地,把三角形的三個內(nèi)角A,B,C和它們的對邊叫做三角形的________,已知三角形的幾個元素求
2025-06-08 00:37
【總結(jié)】正弦定理A組基礎(chǔ)鞏固1.在△ABC中,已知b=40,c=20,C=60°,則此三角形的解的情況是()A.有一解B.有兩解C.無解D.有解但解的個數(shù)不確定解析:由正弦定理bsinB=csinC,得sinB=bsinCc=40×3220=31.∴
2024-12-08 20:25
【總結(jié)】直線的斜率【課時目標(biāo)】1.理解直線的傾斜角和斜率的概念.2.掌握求直線斜率的兩種方法.3.了解在平面直角坐標(biāo)系中確定一條直線的幾何要素.1.在平面直角坐標(biāo)系中,對于一條與x軸相交的直線,把x軸所在的直線繞著交點按________________旋轉(zhuǎn)到和直線重合時所轉(zhuǎn)過的____________稱為這條直線的__________,并
2024-12-05 10:20
【總結(jié)】簡單的線性規(guī)劃問題(一)課時目標(biāo)..線性規(guī)劃中的基本概念名稱意義約束條件由變量x,y組成的不等式或方程線性約束條件由x,y的一次不等式(或方程)組成的不等式組目標(biāo)函數(shù)欲求最大值或最小值所涉及的變量x,y的函數(shù)解析式線性目標(biāo)函數(shù)關(guān)于x,y的一次解析式可行解滿足線性約束條件的
2024-12-05 03:23
【總結(jié)】1.2余弦定理△ABC中,已知邊a,b及∠C.1.若∠C=90°,則c2=a2+b2.2.若∠C是銳角,如左下圖,作AD⊥BC于點D,于是AD=b·sinC,CD=b·cos_C,BD=a-bcos_C.3.若∠C為鈍角,如右上圖,作
2024-12-09 03:46
【總結(jié)】【高考調(diào)研】2021年高中數(shù)學(xué)課時作業(yè)1正弦定理(第1課時)新人教版必修51.在△ABC中,下列等式中總能成立的是()A.a(chǎn)sinA=bsinBB.bsinC=csinAC.a(chǎn)bsinC=bcsinBD.a(chǎn)bsinC=bcsinA答案D2.在△ABC中,a=4,A=45°
2024-11-28 00:25
【總結(jié)】人教版高中數(shù)學(xué)必修5正弦定理和余弦定理測試題及答案一、選擇題1.在△ABC中,三個內(nèi)角A,B,C的對邊分別是a,b,c,若a=2,b=3,cosC=-,則c等于()(A)2 (B)3 (C)4 (D)52.在△ABC中,若BC=,AC=2,B=45°,則角A等于()(A)60° (B)30° (C)60°或120
2025-06-23 04:10