【總結(jié)】1一元二次不等式及其解法導(dǎo)學(xué)案一、學(xué)習目標理解一元二次方程、一元二次不等式與二次函數(shù)的關(guān)系,掌握圖象法解一元二次不等式的方法;培養(yǎng)數(shù)形結(jié)合的能力,培養(yǎng)分類討論的思想方法,培養(yǎng)抽象概括能力和邏輯思維能力;二、本節(jié)重點難點熟練掌握一元二次不等式的解法問題1:請同學(xué)們畫出一次函數(shù)72??xy的圖象,從圖象上觀察y=0,y&
2024-11-21 22:11
【總結(jié)】《一元二次不等式及其解法》典型例題透析類型一:解一元二次不等式例1.解下列一元二次不等式(1);(2);(3)思路點撥:轉(zhuǎn)化為相應(yīng)的函數(shù),數(shù)形結(jié)合解決,或利用符號法則解答.解析:(1)方法一:因為所以方程的兩個實數(shù)根為:,函數(shù)的簡圖為:因而不等式的解集是.方法二:或解得或,即或.因而不等式的解集是.(2)方
2025-03-24 05:31
【總結(jié)】第一篇:(一元二次不等式的概念和一元二次不等式解法) 一元二次不等式及其解法 一元二次不等式的概念和一元二次不等式解法 從容說課 ,第一個學(xué)時先由師生共同分析日常生活中的實際問題來引出一...
2024-10-20 16:47
【總結(jié)】一對一個性化輔導(dǎo)教案課題一元二次不等式及其解法教學(xué)重點一元二次不等式及其解法教學(xué)難點一元二次不等式及其解法教學(xué)目標掌握二元一次不等式與線性規(guī)劃的基本知識及方法技巧教學(xué)步驟及教學(xué)內(nèi)容1、課前熱身,準備上課二、內(nèi)容講解三.課堂小結(jié)4、作業(yè)布置 管理人
【總結(jié)】【教學(xué)目標】1.知識與技能:理解一元二次方程、一元二次不等式與二次函數(shù)的關(guān)系,掌握圖象法解一元二次不等式的方法;培養(yǎng)數(shù)形結(jié)合的能力,培養(yǎng)分類討論的思想方法,培養(yǎng)抽象概括能力和邏輯思維能力;2.過程與方法:經(jīng)歷從實際情境中抽象出一元二次不等式模型的過程和通過函數(shù)圖象探究一元二次不等式與相應(yīng)函數(shù)、方程的聯(lián)系,獲得一元二次不等式的解法;3.情態(tài)與價值:激發(fā)學(xué)習數(shù)學(xué)的熱情,培養(yǎng)勇于探
2025-04-17 01:17
【總結(jié)】-不等式的性質(zhì)及一元二次不等式的解法一、不等關(guān)系與不等式1、不等式的定義:用不等號(“≤”,“≥”,“<”,“>”,“≠”)表示不等關(guān)系的式子。用“<”,“>”連接的不等式叫嚴格不等式,用“≤”,“≥”連接的不等式叫非嚴格不等式。2、實數(shù)的特征和實數(shù)大小的比較(1)、特征:(1)任意實數(shù)的平方不小于0:即:∈R,則2≥0;(2)任意兩個實數(shù)都可以比較大小。3、實數(shù)比較
2025-04-16 12:51
【總結(jié)】第一篇: 教學(xué)準備 (1)掌握一元二次不等式的解法; (2)能利用一元二次函數(shù)與一元二次方程來求解一元二次不等式,理解它們?nèi)咧g的內(nèi)在聯(lián)系; (3)通過利用二次函數(shù)的圖象來求解一元二次不...
2024-10-21 14:38
【總結(jié)】第一篇:一元二次不等式及其解法公開課教案(精) 公開課教案 課題:授課時間:年月日(星期第節(jié)授課班級:執(zhí)教者:指導(dǎo)教師:項目內(nèi)容 一、、一元二次方程的聯(lián)系;; 二、重點與難點重點:解一元二次不...
2024-10-29 11:02
【總結(jié)】一元二次不等式的解法(第一課時)說課王新剛?cè)私贪嫫胀ǜ咧姓n程標準實驗教科書數(shù)學(xué)必修5說教材內(nèi)容整合內(nèi)容標準說建議說課程序說課標教材特點課標要求教學(xué)建議評價
2024-11-22 01:29
【總結(jié)】課題:一元二次不等式的解法一元一次函數(shù)一元二次函數(shù)一元一次函數(shù)一元一次方程一元一次不等式它們之間有怎樣的聯(lián)系?請同學(xué)們解決如下問題:?(1)解方程2x-7=0?(2)作出函數(shù)y=2x-7的圖像?(3)解不等式2x-70請看下表:“三個一次”的聯(lián)
2024-10-19 08:19
【總結(jié)】課時作業(yè)16 一元二次不等式及其解法時間:45分鐘 滿分:100分課堂訓(xùn)練1.不等式x2-5x+6≤0的解集為( )A.[2,3] B.[2,3)C.(2,3) D.(2,3]【答案】 A【解析】 因為方程x2-5x+6=0的解為x=2或x=3,所以不等式的解集為{x|2≤x≤3}.2.若a2-a+10,則不等式x2+ax+1>
2025-06-23 20:16
【總結(jié)】含參一元二次不等式的解法溫縣第一高級中學(xué)數(shù)學(xué)組任利民解含參一元二次不等式,常涉及對參數(shù)的分類討論以確定不等式的解,:①比較兩根大?。虎谂袆e式的符號;③.一、根據(jù)二次不等式所對應(yīng)方程的根的大小分類例1解關(guān)于的不等式.分析:原不等式等價于,所對應(yīng)方程的兩根是,.解:原不等式等價于,所對應(yīng)方程的兩根是或.當時,有,所以不等式的解集為或.當時,有,所
2025-06-25 16:54
【總結(jié)】第一篇:一元二次不等式的解法說課稿1 一元二次不等式的解法說課稿 一.教材內(nèi)容分析 : 一元二次不等式的解法是解不等式的基礎(chǔ)和核心,在高中數(shù)學(xué)中起著廣泛的應(yīng)用工具作用,蘊藏著重要的數(shù)形結(jié)合思想...
2024-10-24 19:42
【總結(jié)】第一篇:含參數(shù)的一元二次不等式及其解法教案(本站推薦) 含參數(shù)的一元二次不等式及其解法教案 三維目標: 掌握一元二次不等式的解法, 通過體驗解題的過程, ::: 1.完成一元二次方程、一元...
2024-10-22 01:08
【總結(jié)】第一篇:一元二次不等式的解法的教學(xué)設(shè)想 “一元二次不等式的解法” (一)教學(xué)設(shè)想 屯留縣教師進修校賈海芳 中職教材在提供本課內(nèi)容時,是在實數(shù)乘法法則基礎(chǔ)上進行的,所以在進行教學(xué)時總感覺思維放不...
2024-11-03 22:29