【總結(jié)】講練學(xué)案部分§空間向量及其加減運(yùn)算.知識(shí)點(diǎn)一空間向量的概念判斷下列命題是否正確,若不正確,請(qǐng)簡(jiǎn)述理由.①向量AB與AC是共線向量,則A、B、C、D四點(diǎn)必在一條直線上;②②單位向量都相等;③任一向量與它的相反向量不相等;④四邊形ABCD是平行四邊形
2024-12-08 01:49
【總結(jié)】§3.空間向量的數(shù)乘運(yùn)算知識(shí)點(diǎn)一空間向量的運(yùn)算已知ABCD—A′B′C′D′是平行六面體.(1)化簡(jiǎn)12'23AABCAB??(2)設(shè)M是底面ABCD的中心,N是側(cè)面BCC′B′對(duì)角線BC′上的34分點(diǎn),設(shè)'MNABADAA???
【總結(jié)】章末歸納總結(jié)1.空間向量的概念及其運(yùn)算與平面向量類似,向量加、減法的平行四邊形法則,三角形法則以及相關(guān)的運(yùn)算律仍然成立.空間向量的數(shù)量積運(yùn)算、共線向量定理、共面向量定理都是平面向量在空間中的推廣,空間向量基本定理則是向量由二維到三維的推廣.2.a(chǎn)·b=0?a⊥b是數(shù)形結(jié)合的紐帶之一,這是運(yùn)用空間向量研究線線、線面、面面垂直的關(guān)鍵,通??梢耘c
2024-11-17 19:50
【總結(jié)】坐標(biāo)表示1.空間向量的基本定理:2.平面向量的坐標(biāo)表示及運(yùn)算律:(,,)pxiyjijxy??(1)若分別是軸上同方向的兩個(gè)單位向量(,)pxy則的坐標(biāo)為1212(,),(,)aaabbb??(2)若11221122(,)
2024-11-18 11:25
【總結(jié)】數(shù)乘運(yùn)算(二)一、共線向量:零向量與任意向量共線.:如果表示空間向量的有向線段所在直線互相平行或重合,則這些向量叫做共線向量(或平行向量),記作//ab:對(duì)空間任意兩個(gè)向量
2024-11-18 12:14
【總結(jié)】1空間向量運(yùn)算的坐標(biāo)表示北師大版高中數(shù)學(xué)選修2-1第二章《空間向量與立體幾何》法門高中姚連省制作2一、向量的直角坐標(biāo)運(yùn)算則設(shè)),,(),,,(321321bbbbaaaa??;??ab;??ab;??a;??ab//;.??ab;??ab112233(,,)???a
2024-11-17 15:04
【總結(jié)】§3.空間向量的數(shù)量積運(yùn)算知識(shí)點(diǎn)一求兩向量的數(shù)量積如圖所示,已知正四面體O-ABC的棱長(zhǎng)為a,求AB·OC..解由題意知|AB|=|AC|=|AO|=a,且〈AB,AO〉=120AB,CA〉=12
2024-11-20 03:14
【總結(jié)】ykiA(x,y,z)Ojxz重慶市萬(wàn)州分水中學(xué)高中數(shù)學(xué)選修2-1《空間向量的坐標(biāo)表示》教案?jìng)湔n時(shí)間教學(xué)課題教時(shí)計(jì)劃1教學(xué)課時(shí)1教學(xué)目標(biāo)1.能用坐標(biāo)表示空間向量,掌握空間向量的坐標(biāo)運(yùn)算;2.會(huì)根據(jù)向量的坐標(biāo)判斷兩個(gè)空間向量平行。重
2024-11-20 00:30
【總結(jié)】第三章間向量與立體幾何§空間向量及其運(yùn)算知識(shí)點(diǎn)一空間向量概念的應(yīng)用給出下列命題:①將空間中所有的單位向量移到同一個(gè)點(diǎn)為起點(diǎn),則它們的終點(diǎn)構(gòu)成一個(gè)圓;②若空間向量a、b滿足|a|=|b|,則a=b;③
2024-12-08 22:40
【總結(jié)】第一課時(shí)空間向量及其加減與數(shù)乘運(yùn)算教學(xué)要求:理解空間向量的概念,掌握其表示方法;會(huì)用圖形說(shuō)明空間向量加法、減法、數(shù)乘向量及它們的運(yùn)算律;能用空間向量的運(yùn)算意義及運(yùn)算律解決簡(jiǎn)單的立體幾何中的問(wèn)題.教學(xué)重點(diǎn):空間向量的加減與數(shù)乘運(yùn)算及運(yùn)算律.教學(xué)難點(diǎn):由平面向量類比學(xué)習(xí)空間向量.教學(xué)過(guò)程:一、復(fù)習(xí)引入1、有關(guān)平面向量的一
2024-11-19 22:43
【總結(jié)】第三章質(zhì)量評(píng)估檢測(cè)時(shí)間:120分鐘滿分:150分一、選擇題:本大題共12小題,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.若A,B,C,D為空間不同的四點(diǎn),則下列各式為零向量的是()①AB→+2BC→+2CD→+DC→;②2AB→+
2024-12-03 11:33
【總結(jié)】向量代數(shù)空間解析幾何定義:既有大小又有方向的量稱為向量.相等向量、負(fù)向量、向徑.零向量、向量的模單位向量、向量代數(shù)(2)向量的分解式:},,{zyxaaaa??.,,,,軸上的投影分別為向量在其中zyxaaazyxkajaiaazyx??????
2024-10-04 17:17
【總結(jié)】第三章空間向量與立體幾何1、坐標(biāo)運(yùn)算2、共線向量定理3、共面向量定理6、空間向量基本定理7、立體幾何中的向量方法8、角、距離
2025-04-04 05:16
【總結(jié)】1.立體幾何初步(1)空間幾何體①認(rèn)識(shí)柱、錐、臺(tái)、球及其簡(jiǎn)單組合體的結(jié)構(gòu)特征,并能運(yùn)用這些特征描述現(xiàn)實(shí)生活中簡(jiǎn)單物體的結(jié)構(gòu).②能畫(huà)出簡(jiǎn)單空間圖形(長(zhǎng)方體、球、圓柱、圓錐、棱柱等的簡(jiǎn)易組合)的三視圖,能識(shí)別上述的三視圖所表示的立體模型,會(huì)用斜二測(cè)法畫(huà)出它們的直觀圖.③會(huì)用平行投影與中心
2025-06-16 12:13
【總結(jié)】空間向量與立體幾何經(jīng)典題型與答案1已知四棱錐的底面為直角梯形,,底面,且,,是的中點(diǎn)(Ⅰ)證明:面面;(Ⅱ)求與所成的角;(Ⅲ)求面與面所成二面角的大小證明:以為坐標(biāo)原點(diǎn)長(zhǎng)為單位長(zhǎng)度,如圖建立空間直角坐標(biāo)系,則各點(diǎn)坐標(biāo)為(Ⅰ)證明:因由題設(shè)知,且與是平面內(nèi)的兩條相交直線,由此得面又在面上,故面⊥面(Ⅱ)解:因(Ⅲ)解:在
2025-06-18 13:50