【總結】第一頁,編輯于星期六:點三十二分。,2.4平面向量的數(shù)量積2.4.1平面向量數(shù)量積的物理背景及其含義,第二頁,編輯于星期六:點三十二分。,,登高攬勝拓界展懷,課前自主學習,第三頁,編輯于星期六:點三十...
2024-10-22 18:49
【總結】第二章平面向量平面向量的基本定理及坐標表示1.掌握平面向量基本定理并能熟練應用.2.掌握平面向量的坐標運算.3.理解用坐標表示平面向量共線的條件及判斷向量是否共線.1.已知e1、e2是表示平面內所有向量的一組基底,則下列各組向量中,不能作為平面向量一組基底的是()A.e1+e2和e1-e2
2024-11-19 17:33
【總結】平面向量基本定理如果是同一平面內的兩個不共線向量,那么對于這一平面內的任意向量有且只有一對實數(shù)使.12ee,a,12,??,1122aee????不共線的向量叫做表示這一平面內所有向量的一組基底.12e,e向量的
【總結】"【志鴻全優(yōu)設計】2021-2021學年高中數(shù)學積的坐標表示課后訓練北師大版必修4"1.已知向量a=(x-1,2),b=(2,1),則a⊥b的充要條件是().A.x=12?B.x=-1C.x=5D.x=02.若a=(2,3),b=(-4,7)
2024-12-03 03:13
【總結】?1.平面向量共線的坐標表示?設a=(x1,y1),b=(x2,y2),則a∥b?.?2.下列各組向量中,共線的是?()?A.a(chǎn)=(-1,2),b=(3,5)?B.a(chǎn)=(1,2),b=(2,1)?C.a(chǎn)=(2,-1),b=(3,4)?D.a(chǎn)=(-2,1
2025-08-05 18:26
【總結】平面向量數(shù)量積的坐標表示、模、夾角一.復習回顧:?向量的運算律?運算律有:)()().(2bababa????????abba???.1cbcacba??????).(3??是兩個向量的夾角其中??cos??????baba2、兩平面向量垂直的充要條件是什么?
2025-06-05 22:19
【總結】平面向量共線的坐標表示學習目標:1.理解用坐標表示的平面向量共線的條件.2.能根據(jù)平面向量的坐標,判斷向量是否共線.3.掌握三點共線的判斷方法.【學法指導】1.應用平面向量共線條件的坐標表示來解決向量的共線問題優(yōu)點在于不需要引入?yún)?shù)“λ”,從而減少了未知數(shù)的個數(shù),而且使問題具有代數(shù)化的特點、程序
2024-11-19 20:38
【總結】【金榜教程】2021年高中數(shù)學試題北師大版必修4(30分鐘50分)一、選擇題(每小題4分,共16分)a=(3,1),b=(x,-3),且a⊥b,則實數(shù)x的值為()(A)-9(B)9(C)1(D)-12.(2021·遼寧高考)已知向量a=(2,1),b
2024-12-03 03:14
【總結】Oxya引入:,點A可以用什么來表示??OxyA(a,b)aba:如果e1,e2是同一平面內的兩個不共線的向量,那么對于這一平面內的任一向量a,有且只有一對實數(shù)λ1,λ2使得a=λ1e1+λ2e2.不共線的兩向量e1,e2叫做這一平面內所
2025-06-06 00:43
【總結】平面向量數(shù)量積的坐標表示教學目標1.正確理解掌握兩個向量數(shù)量積的坐標表示方法,能通過兩個向量的坐標求出這兩個向量的數(shù)量積.2.掌握兩個向量垂直的坐標條件,能運用這一條件去判斷兩個向量垂直.3.能運用兩個向量的數(shù)量積的坐標表示去解決處理有關長度、角度、垂直等問題.重點:兩個向量數(shù)量積的坐標表示,向量的長度公式,兩個向量垂直的充要條件.難點
2024-11-19 20:36
【總結】平面向量共線的坐標表示一、求點P分有向線段所成的比的幾種求法(1)定義法:根據(jù)已知條件直接找到使PP1=λ2PP的實數(shù)λ的值.例1已知點A(-2,-3),點B(4,1),延長AB到P,使|AP|=3|PB|,求點P的坐標.解:因為點在AB的延長線上,P為AB的外分點,所以AP=λPB,λ0
2024-11-19 17:32
【總結】a?Ab?BCba???a?a?Ab?Bb?OCba???特點:首尾相接特點:共起點bBaABAab??:O特點:共起點:::向量與非零向量共線當且僅當有唯一一個實數(shù),使得ab
2024-11-18 12:17
【總結】平面向量的基本定理及坐標表示平面向量基本定理平面向量的正交分解及坐標表示2020/12/25研修班2問題提出1.向量加法與減法有哪幾種幾何運算法則?λa?(1)|λa|=|λ||a|;(2)λ0時,λa與a方向相同;λ0時,λa與a方向相反;
【總結】復習:共線向量基本定理:向量與向量共線當且僅當有唯一一個實數(shù)使得(0)aa?b?ab??abbb0??0??已知平行四邊形ABCD中,M,N分別是BC,DC的中點且,用表
2024-11-17 12:03
【總結】2.平面向量共線的坐標表示命題方向1三點共線問題例1.O是坐標原點,OA→=(k,12),OB→=(4,5),OC→=(10,k).當k為何值時,A、B、C三點共線?[分析]由A、B、C三點共線可知,AB→、AC→、BC→中任兩個共線,由坐標表示的共線條件解方