【總結】思考:一元二次方程ax2+bx+c=0(a≠0)的根與二次函數(shù)y=ax2+bx+c(a≠0)的圖象有什么關系?我們知道,令一個一元二次函數(shù)2(0)yaxbxca????的函數(shù)值y=0,則得到一元二次方程20(0)axbxca????問題1觀察下表(一),說出表中一元二次方程的實
2024-11-12 18:12
【總結】 方程的根與函數(shù)的零點 1.函數(shù)零點的概念 對于函數(shù)y=f(x),我們把使f(x)=0的實數(shù)x叫做函數(shù)y=f(x)的零點.函數(shù)y=f(x)的零點就是方程f(x)=0的實數(shù)根,也就是函數(shù)y=...
2024-10-09 19:12
【總結】方程的根與函數(shù)的零點方程解法史話:數(shù)學家方臺納的故事1535年,在意大利有一條轟動一時的新聞:數(shù)學家奧羅挑戰(zhàn)數(shù)學家方臺納,奧羅給方臺納出了30道題,求解x3+5x=10,x3+7x=14,x3+11x=20,……;諸如方程x3+Mx=N,M,N是正整數(shù),比賽時間為20天,方臺納埋頭苦干,終于在最后一天解決了這個問題。方程的求解經
2024-11-09 04:14
【總結】方程的根與函數(shù)的零點一、選擇題1.已知函數(shù)f(x)的圖象是連續(xù)不斷的,有如下的x,f(x)對應值表x1234567f(x)136.13615.552-210.88-88-6411.238由表可知函數(shù)f(x)存在零點的區(qū)間有(
2024-12-07 21:18
【總結】方程的根與函數(shù)的零點課標分析【課標分析】必修一第三章“函數(shù)與方程”是高中數(shù)學的新增內容,是近年來高考關注的熱點.本章函數(shù)與方程是中學數(shù)學的核心概念,并且與其他知識具有廣泛的聯(lián)系性,地位重要。本節(jié)課方程的根與函數(shù)的零點是整章內容的一個鏈結點,它從不同的角度,將數(shù)與形,函數(shù)與方程有機的聯(lián)系在一起。本節(jié)內容,學生將學習利用函數(shù)的
2024-11-28 21:40
【總結】函數(shù)的零點學案【預習要點及要求】1.理解函數(shù)零點的概念。2.會判定二次函數(shù)零點的個數(shù)。3.會求函數(shù)的零點。4.掌握函數(shù)零點的性質。5.能結合二次函數(shù)圖象判斷一元二次方程式根存在性及根的個數(shù)。6.理解函數(shù)零點與方程式根的關系。7.會用零點性質解決實際問題。【知識再現(xiàn)】1.如何判一元二次方程式實根個數(shù)
2024-12-08 22:39
【總結】方程的根和函數(shù)的零點思考:一元二次方程ax2+bx+c=0(a≠0)的根與二次函數(shù)y=ax2+bx+c(a≠0)的圖象有什么關系?方程x2-2x+1=0x2-2x+3=0y=x2-2x-3y=x2-2x+1函數(shù)函
2024-10-11 16:46
【總結】學習目標1理解零點的概念。2學會求函數(shù)的零點。3判斷零點所在區(qū)間。定義:對于函數(shù)y=f(x),使f(x)=0的實數(shù)x叫做函數(shù)y=f(x)的零點。(一)函數(shù)的零點方程f(x)=0有實數(shù)根函數(shù)y=f(x)有零點等價關系函數(shù)y=f(x)的圖象與x軸有交點
2024-11-11 21:09
【總結】1《方程的根與函數(shù)的零點》的教學設計湖北省黃岡市團風中學胡建平教材分析本節(jié)課選自《普通高中課程標準實驗教課書數(shù)學I必修本(A版)》的第三章的根與函數(shù)的的零點。函數(shù)與方程是中學數(shù)學的重要內容,既是初等數(shù)學的基礎,又是出等數(shù)學與高等數(shù)學的連接紐帶。在現(xiàn)實生活實踐中,函數(shù)與方程都有著十分的應用,在注重理論與實踐相結合的今天,
2024-11-21 04:35
【總結】課題:方程的根與函數(shù)的零點(1)精講部分學習目標展示(1)理解函數(shù)的概念,會求一般函數(shù)的零點,了解函數(shù)零點與方程根的關系(2)會求二次函數(shù)的零點及零點個數(shù)的判定銜接性知識:(1)240x??(2)2210xx???(3)2320xx??
2024-11-19 12:01
【總結】方程的根與函數(shù)的零點教學設計一、教學內容解析《方程的根與函數(shù)的零點》是人教A版必修一第三章《函數(shù)的應用》第一節(jié)的內容.必修一共分為三章,第一章介紹了函數(shù)的概念及性質,第二章引入了指、對、冪三種基本初等函數(shù).本章是函數(shù)應用問題,主要分為兩個層面:(1)數(shù)學學科內部應用,如方程的根與函數(shù)的零點的關系,可以通過函數(shù)方程思想,及數(shù)形結合思想,獲得函數(shù)的
2024-11-18 16:47
【總結】2020年高中數(shù)學函數(shù)的零點學案新人教B版必修1知識與技能:結合二次函數(shù)的圖象,理解函數(shù)的零點概念,領會函數(shù)零點與相應方程根的關系;過程與方法:掌握求函數(shù)零點的方法,并能簡單應用;情感態(tài)度與價值觀:通過學習,體會數(shù)形結合的思想從特殊到一般的思考問題的方法。二、學習重、難點:函數(shù)的零點的概念及求法和性質。
2024-11-19 22:42
2024-11-19 23:24
【總結】【金版學案】2021-2021年高中數(shù)學函數(shù)的零點學案蘇教版必修11.函數(shù)零點的概念.對于函數(shù)y=f(x)(x∈D),把使f(x)=0成立的實數(shù)x叫做函數(shù)y=f(x)(x∈D)的零點.例如:y=2x+1的函數(shù)圖象與x軸的交點為??????-12,0,有一個零點是-12.二次函數(shù)
2024-11-28 18:29
【總結】哪里有數(shù),哪里就有美代數(shù)是搞清楚世界上數(shù)量關系的智力工具數(shù)學是科學的大門和鑰匙問題1:2x-1=0與y=2x-1它們的含義分別如何?2x-1=0的根與函數(shù)y=2x-1的圖
2025-08-01 14:39