【總結(jié)】平面向量1向量的概念:①向量:既有大小又有方向的量向量一般用……來表示,或用有向線段的起點(diǎn)與終點(diǎn)的大寫字母表示,如:幾何表示法,;坐標(biāo)表示法向量的大小即向量的模(長度),記作||即向量的大小,記作||向量不能比較大小,但向量的??梢员容^大?。诹阆蛄浚洪L度為0的向量,記為,其方向是任意的,與任意向量平行零向量=||=0由于的方向是任意的,且規(guī)定平行于任何向
2025-04-04 05:08
【總結(jié)】淺析向量在高中數(shù)學(xué)中的角色海南省瓊中縣陽江農(nóng)場中學(xué)高中數(shù)學(xué)教師:連輝華2009-4-14在高中數(shù)學(xué)新課程教材中,在必修二學(xué)習(xí)空間幾何體,點(diǎn)、線、面的位置關(guān)系,接著必修四第二章學(xué)習(xí)平面向量,讓學(xué)生對向量有了初步認(rèn)識,到選修2-2的空間向量與立體幾何充分將之前學(xué)過的內(nèi)容有機(jī)的結(jié)合在一起,用向量解決空間幾何問題思路清晰,過程簡潔,有意想不到的神奇效果,比起過去的常規(guī)法解決空間幾何問題有了更
2025-08-09 15:27
【總結(jié)】Oxya引入:,點(diǎn)A可以用什么來表示??OxyA(a,b)aba:如果e1,e2是同一平面內(nèi)的兩個(gè)不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實(shí)數(shù)λ1,λ2使得a=λ1e1+λ2e2.不共線的兩向量e1,e2叫做這一平面內(nèi)所
2024-11-17 15:05
【總結(jié)】第一篇:高中數(shù)學(xué)新課程創(chuàng)新教學(xué)設(shè)計(jì)案例50篇40平面向量的數(shù)量積 平面向量的數(shù)量積 教材分析 兩個(gè)向量的數(shù)量積是中學(xué)代數(shù)以往內(nèi)容中從未遇到過的一種新的乘法,它區(qū)別于數(shù)的乘法.這篇案例從學(xué)生熟知的...
2024-10-21 03:39
【總結(jié)】第1講平面向量的概念與運(yùn)算新疆王新敞特級教師源頭學(xué)子小屋htp:/htp:/人教A版高中數(shù)學(xué)·必修章節(jié)復(fù)習(xí)特級教師王新敞源頭學(xué)子2()C行的向量0新疆王新敞特級教師源頭學(xué)子小屋htp:/htp:/人教A版高中數(shù)學(xué)
2025-06-13 12:24
【總結(jié)】2020/12/24向量的加法看書P80~83(限時(shí)6分鐘)學(xué)習(xí)目標(biāo):通過實(shí)例,掌握向量的加法運(yùn)算及理解其幾何意義。熟練運(yùn)用加法的“三角形法則”和“平行四邊形”法則2020/12/24由于大陸和臺灣沒有直航,因此要從臺灣去上海探親,乘飛機(jī)要先從臺北到香港,再從香港到上海,這兩次位移
2024-11-17 11:59
【總結(jié)】(文)已知向量(Ⅰ)若,求的值;(Ⅱ)若求的值。答案:(Ⅰ)因?yàn)?,所以于是,故(Ⅱ)由知,所以從而,即,,,所以,?因此,或來源:09年高考湖南卷題型:解答題,難度:中檔已知向量a=(cosθ,sinθ),向量b=(,-1),則|2a-b|的最大值、最小值分別是(A)
2025-01-14 11:40
【總結(jié)】這一次我學(xué)會了獨(dú)立第一篇:這一次我學(xué)會了獨(dú)立這一次我學(xué)會了獨(dú)立在我小時(shí)候,我老是要依靠媽媽,但經(jīng)歷了一件事后,我成長了。我還記得那次??“媽媽,媽媽!”我醒了過來,發(fā)現(xiàn)媽媽和爸爸不在了,家里只剩我一人,我的第一反應(yīng)就是害怕,給他們打電話,可是他們也不接。我想:“他們一定去買早飯了,我先等
2025-04-07 08:45
【總結(jié)】5of5快樂課堂學(xué)數(shù)學(xué)-多余老師趣講“平面向量”-高中數(shù)學(xué)必修4一、本單元概述向量,最初被應(yīng)用于物理學(xué)。很多物理量如力、速度、位移以及將要學(xué)習(xí)到的電場強(qiáng)度、磁感應(yīng)強(qiáng)度等都是向量。大約公元前350年前,古希臘著名學(xué)者亞里士多德就知道了力可以表示成向量,兩個(gè)力的組合作用可用著名的平行四邊形法則來得到?!跋蛄俊币辉~來自力學(xué)、解析幾何中的有向線段。最先使用有向線段表示
2025-08-04 16:32
【總結(jié)】求函數(shù)的值域.答案:構(gòu)造向量....另一方面:.所以原函數(shù)的值域是.來源:1題型:解答題,難度:中檔矩形ABCD內(nèi)任一點(diǎn)P,求證:PA2+PC2=PB2+PD2答案:證明:建系,設(shè)點(diǎn)P坐標(biāo)為(x,y)A(a,0)B(a,b)C(0,b)
2025-01-14 10:05
【總結(jié)】第一篇:高中數(shù)學(xué)新課程創(chuàng)新教學(xué)設(shè)計(jì)案例50篇__40-43平面向量 平面向量的數(shù)量積 教材分析 兩個(gè)向量的數(shù)量積是中學(xué)代數(shù)以往內(nèi)容中從未遇到過的一種新的乘法,它區(qū)別于數(shù)的乘法.這篇案例從學(xué)生熟知...
2024-10-21 04:11
【總結(jié)】向量的坐標(biāo)表示平面向量基本定理一、填空題1.若e1,e2是平面內(nèi)的一組基底,則下列四組向量能作為平面向量的基底的是________.①e1-e2,e2-e1②2e1+e2,e1+2e2③2e2-3e1,6e1-4e2④e1+e2,e1-e22.下面三種說法中,正確的是________.①一個(gè)平面
2024-12-05 10:15
【總結(jié)】高中數(shù)學(xué)必修四平面向量參考復(fù)習(xí)題答案
2025-01-14 09:45
【總結(jié)】課題:平面向量復(fù)習(xí)班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】通過本章的復(fù)習(xí),對知識進(jìn)行一次梳理,突出知識間的內(nèi)在聯(lián)系,提高綜合運(yùn)用向量知識解決問題的能力?!菊n前預(yù)習(xí)】1、已知向量a=(5,10),b=(3,4)??,則(1)2a+b=,a
2024-12-05 03:24
【總結(jié)】向量的概念既有大小又有方向的量叫現(xiàn)實(shí)生活中還有哪些量既有大小又有方向?哪些量只有大小沒有方向?距離、身高、質(zhì)量、時(shí)間、面積等位移、力、速度、加速度、電場強(qiáng)度等向量一:向量定義注意:數(shù)量與向量的區(qū)別1、數(shù)量只有大小,是一個(gè)代數(shù)量,可以進(jìn)行代數(shù)運(yùn)算、比較大??;2、向量不僅有大小還有方向,具有雙
2025-08-01 17:32