【總結(jié)】平面向量的坐標一、教學(xué)目標:(1)掌握平面向量正交分解及其坐標表示.(2)會用坐標表示平面向量的加、減及數(shù)乘運算.(3)理解用坐標表示的平面向量共線的條件.教材利用正交分解引出向量的坐標,在此基礎(chǔ)上得到平面向量線性運算的坐標表示及向量平行的坐標表示;最后通過講解例題,鞏固知識結(jié)論,培養(yǎng)學(xué)生應(yīng)用能力.通過本節(jié)內(nèi)
2024-11-19 23:18
【總結(jié)】第3講平面向量感悟高考明確考向(2010·天津)如圖,在△ABC中,AD⊥AB,???ADACAD則,1||,3BDBC?.解析設(shè)BD=a,則BC=3a,作CE⊥BA交BA的延長線于E,可知∠DAC=∠ACE,在Rt
2024-11-12 19:04
【總結(jié)】第一篇:平面向量在高中數(shù)學(xué)教學(xué)中的作用 平面向量在高中數(shù)學(xué)教學(xué)中的作用 、定理、性質(zhì)及有關(guān)公式,可以簡化解題過程,,本身這個運算學(xué)生總最初接觸運算都是數(shù)與數(shù)之間的運算,而加入向量運算之后,向量運算...
2024-11-16 22:11
【總結(jié)】2.平面向量的坐標運算情景:我們知道,在直角坐標平面內(nèi),每一個點都可用一對有序?qū)崝?shù)(即它的坐標)表示,如點A(x,y)等.思考:對于每一個向量如何表示?若知道平面向量的坐標,應(yīng)如何進行運算?1.兩個向量和的坐標等于________________________________.即若a=(x1,y1),b
2024-12-05 10:15
【總結(jié)】課題坐標的標示及運算教學(xué)目標知識與技能了解平面向量的正交分解,掌握向量的坐標表示.過程與方法掌握兩個向量和、差及數(shù)乘向量的坐標運算法則.情感態(tài)度價值觀正確理解向量坐標的概念,要把點的坐標與向量的坐標區(qū)分開來.重點溝通向量“數(shù)”與“形”的特征,使向
2024-11-19 17:32
【總結(jié)】平面向量測試題一、選擇題:1。已知ABCD為矩形,E是DC的中點,且=,=,則=()(A)+(B)-(C)+(D)-2.已知B是線段AC的中點,則下列各式正確的是()(A)=-(B)=(C)=(D)=3.已知ABCDEF是正六邊形,且=,=,則=()(A)(B)(C)+(D)4.設(shè),為不共
2025-06-23 01:37
【總結(jié)】第二節(jié)平面向量的基本定理及坐標表示基礎(chǔ)梳理(1)平面向量基本定理定理:如果e1,e2是同一平面內(nèi)的兩個的向量,那么對于這一平面內(nèi)的任意向量a,一對實數(shù)λ1,λ2,使a=.其中
2024-11-12 16:44
【總結(jié)】平面向量的坐標表示與運算OxyijaA(x,y)a1.以原點O為起點作,點A的位置由誰確定?aOA?由a唯一確定2.點A的坐標與向量a的坐標的關(guān)系?兩者相同向量a坐標(x,y)一一對應(yīng)復(fù)習回顧已知
2024-11-18 12:09
【總結(jié)】平面向量的正交分解及坐標表示平面向量的坐標運算1.下列說法正確的有()①向量的坐標即此向量終點的坐標.②位置不同的向量其坐標可能相同.③一個向量的坐標等于它的終點坐標減去它的始點坐標.④相等的向量坐標一定相同.A.1個B.2個C.3個D.4個解析:向量的坐標是其終點坐標減去起點對
【總結(jié)】平面向量的坐標運算學(xué)習目標:1.了解平面向量的正交分解,掌握向量的坐標表示.2.掌握兩個向量和、差及數(shù)乘向量的坐標運算法則.3.正確理解向量坐標的概念,要把點的坐標與向量的坐標區(qū)分開來.【學(xué)法指導(dǎo)】1.向量的正交分解是把一個向量分解為兩個互相垂直的向量,是向量坐標表示的理論依據(jù).向量的坐標表示
2024-11-19 17:41
【總結(jié)】平面向量的正交分解及坐標表示平面向量的坐標運算考查知識點及角度難易度及題號基礎(chǔ)中檔稍難平面向量的坐標表示1、2、46平面向量的坐標運算3、57、8綜合問題9、10111.若O(0,0),A(1,2),且OA′→=2OA→,則A′點坐標為()A.(1,4)
【總結(jié)】平面向量的坐標運算(二)一、填空題1.已知三點A(-1,1),B(0,2),C(2,0),若AB→和CD→是相反向量,則D點坐標是________.2.若a=(2cosα,1),b=(sinα,1),且a∥b,則tanα=______.3.已知向量a=(2x+1,4),b=(2-x,3),若
2024-12-09 03:42
【總結(jié)】?1.平面向量共線的坐標表示?設(shè)a=(x1,y1),b=(x2,y2),則a∥b?.?2.下列各組向量中,共線的是?()?A.a(chǎn)=(-1,2),b=(3,5)?B.a(chǎn)=(1,2),b=(2,1)?C.a(chǎn)=(2,-1),b=(3,4)?D.a(chǎn)=(-2,1
2025-08-05 18:26
【總結(jié)】§平面向量的坐標運算(二)知識回顧平面向量的坐標表示分別與x軸、y軸方向相同的兩單位向量i、j作為基底,任一向量a,有且只有一對實數(shù)x、y,使得Oxyijaa=xi+yj=(x,y)1.設(shè)則
2024-11-09 06:28