【總結(jié)】平面向量的坐標(biāo)運(yùn)算(二)一、填空題1.已知三點(diǎn)A(-1,1),B(0,2),C(2,0),若AB→和CD→是相反向量,則D點(diǎn)坐標(biāo)是________.2.若a=(2cosα,1),b=(sinα,1),且a∥b,則tanα=______.3.已知向量a=(2x+1,4),b=(2-x,3),若
2024-12-05 10:15
【總結(jié)】a?Ab?BCba???a?a?Ab?Bb?OCba???特點(diǎn):首尾相接特點(diǎn):共起點(diǎn)bBaABAab??:O特點(diǎn):共起點(diǎn):::向量與非零向量共線當(dāng)且僅當(dāng)有唯一一個(gè)實(shí)數(shù),使得ab
2024-11-17 19:47
【總結(jié)】平面向量的基本定理及坐標(biāo)表示習(xí)題課一、選擇題1.如圖,e1,e2為互相垂直的單位向量,向量a+b+c可表示為()A.3e1-2e2B.-3e1-3e2C.3e1+2e2D.2e1+3e2解析:a+b+c=3e1+2e2.答案:C2.已知向量a=(1,-2),|b|=4|a|
2024-11-19 17:33
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)平面向量共線的坐標(biāo)表示課時(shí)跟蹤檢測新人教A版必修4考查知識點(diǎn)及角度難易度及題號基礎(chǔ)中檔稍難向量共線的判定1、2、310由向量共線求參數(shù)56、7、8向量共線的應(yīng)用49111.已知m,n∈R,向量a=(2m+1,m+n)與b=
2024-12-08 20:21
【總結(jié)】2.平面向量的坐標(biāo)運(yùn)算情景:我們知道,在直角坐標(biāo)平面內(nèi),每一個(gè)點(diǎn)都可用一對有序?qū)崝?shù)(即它的坐標(biāo))表示,如點(diǎn)A(x,y)等.思考:對于每一個(gè)向量如何表示?若知道平面向量的坐標(biāo),應(yīng)如何進(jìn)行運(yùn)算?1.兩個(gè)向量和的坐標(biāo)等于________________________________.即若a=(x1,y1),b
【總結(jié)】教學(xué)內(nèi)容:§平面向量的基本定理及坐標(biāo)表示(1)教學(xué)目標(biāo)1.理解平面向量的基本定理,會作出由已知一組基底所表示的向量;2.理解向量夾角及垂直的概念;3.理解向量的正交分解,感受正交分解的實(shí)際意義,掌握向量的坐標(biāo)表示。本節(jié)重點(diǎn)平面向量的基本定理,向量的正交分解及坐標(biāo)表示本節(jié)難點(diǎn)平面向量的
2024-11-20 03:14
【總結(jié)】平面向量數(shù)量積的坐標(biāo)表示、模、夾角考查知識點(diǎn)及角度難易度及題號基礎(chǔ)中檔稍難向量數(shù)量積的運(yùn)算1、412與模有關(guān)的問題2、59、10向量的夾角與垂直問題3、67、8、111.設(shè)向量a=(1,0),b=??????12,12,則下列結(jié)論中正確的是()A.|a|=|b
2024-12-05 06:47
【總結(jié)】復(fù)習(xí)引入?.(1)21向量的一組基底有叫做表示這一平面內(nèi)所,我們把不共線向量ee(2)基底不惟一,關(guān)鍵是不共線;進(jìn)行分解;的條件下、在給出基底由定理可將任一向量21(3)eea.,,(4)2121惟一確定的數(shù)量、、是被、分解形式惟一基底給定時(shí)eea??若e1、e2是同一平面內(nèi)的兩個(gè)不共線向量
2024-11-17 15:02
【總結(jié)】第二章平面向量平面向量的基本定理及坐標(biāo)表示平面向量共線的坐標(biāo)表示1.通過實(shí)例了解如何用坐標(biāo)表示兩個(gè)共線向量,以及兩直線平行與兩向量共線的判定.(易混點(diǎn))2.理解用坐標(biāo)表示的平面向量共線的條件,并會應(yīng)用.(重點(diǎn))3.會根據(jù)平面向量的坐標(biāo)判斷向量是否共線.(難點(diǎn))1.平面向量共線的坐標(biāo)表示2
2024-11-19 19:09
【總結(jié)】§4平面向量的坐標(biāo)4.1平面向量的坐標(biāo)表示4.2平面向量線性運(yùn)算的坐標(biāo)表示4.3向量平行的坐標(biāo)表示,)1.問題導(dǎo)航(1)相等向量的坐標(biāo)相同嗎?相等向量的起點(diǎn)、終點(diǎn)的坐標(biāo)一定相同嗎?(2)求向量AB→的坐標(biāo)需要知道哪些量?(3)兩個(gè)向量a=(x1,y
2024-11-28 00:13
【總結(jié)】海鹽高級中學(xué)高新軍復(fù)習(xí)引入:?若e1、e2是同一平面內(nèi)的兩個(gè)不共線向量,則對于這一平面內(nèi)的任意向量a,有且只有一對實(shí)數(shù)λ1,λ2,使a=λ1e1+λ2e2.?設(shè)i、j是與x軸、y軸同向的兩個(gè)單位向量,若a=xi+yj,則a=(x,y).我們需要研究的問題是:⑴向量的和、差、數(shù)乘、模的運(yùn)算
2024-08-14 06:24
【總結(jié)】課題平面向量數(shù)量積的坐標(biāo)表示、模、夾角教學(xué)目標(biāo)知識與技能理解兩個(gè)向量數(shù)量積坐標(biāo)表示的推導(dǎo)過程,過程與方法能根據(jù)向量的坐標(biāo)計(jì)算向量的模,情感態(tài)度價(jià)值觀并推導(dǎo)平面內(nèi)兩點(diǎn)間的距離公式重點(diǎn)能根據(jù)向量的坐標(biāo)求向量的夾角及判定兩個(gè)向量垂直難點(diǎn)能運(yùn)用數(shù)量積的坐標(biāo)表示進(jìn)行向量數(shù)量積的運(yùn)算.
【總結(jié)】圓學(xué)子夢想鑄金字品牌溫馨提示:此套題為Word版,請按住Ctrl,滑動鼠標(biāo)滾軸,調(diào)節(jié)合適的觀看比例,答案解析附后。課時(shí)提能演練(二十)/課后鞏固作業(yè)(二十)(30分鐘50分)一、選擇題(每小題4分,共16分)≠0,且a的起點(diǎn)不是原點(diǎn)O,則()(A)使得=a的點(diǎn)A不是唯一的(B)不存在點(diǎn)B,使得=a(C)使得=-a的點(diǎn)C是存在的,也是唯一的
2024-08-01 20:42
【總結(jié)】平面向量的正交分解及坐標(biāo)表示和運(yùn)算復(fù)習(xí):平面向量基本定理如果e1,e2是同一平面內(nèi)的兩個(gè)不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實(shí)數(shù)λ1,λ2使得a=λ1e1+λ2e2.不共線的兩向量e1,e2叫做這一平面內(nèi)所有向量的一組基底.什么叫平面的一組基底?平面的基底有多少
2025-06-05 22:12
【總結(jié)】平面向量的正交分解及坐標(biāo)表示的教學(xué)案例一.案例要解決的教學(xué)困惑:在高中數(shù)學(xué)教材中,很多知識,如果學(xué)生記住結(jié)論,學(xué)生就能解決一系列的數(shù)學(xué)題目。對于這類知識的教學(xué)一直困擾我很久。到底是簡單地讓學(xué)生記住一個(gè)公式,一個(gè)結(jié)論,或是純粹地模仿技能,還是要讓學(xué)生通過不斷的思考、探究、實(shí)踐,摸索總結(jié)出公式和結(jié)論呢?新的《普通數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“學(xué)生的數(shù)學(xué)學(xué)習(xí)活動不應(yīng)只限于對概念、結(jié)論和技能的記憶、模
2025-04-17 01:00