【總結】二次函數(shù)第二章二次函數(shù)導入新課講授新課當堂練習課堂小結學習目標.(重點)..(難點)導入新課情景引入里約奧運會上,哪位奧運健兒給你留下了深刻的印象?你能猜出下面表情包是誰嗎?你們是根據(jù)哪些特征猜出的呢?下面來看傅園慧在里約奧運會賽后的采訪視頻,注意前方高能表情包.
2025-06-18 00:31
【總結】第二章二次函數(shù)1二次函數(shù)1.探索并歸納二次函數(shù)的定義.2.能夠表示簡單變量之間的二次函數(shù)關系.函數(shù)變量之間的關系一次函數(shù)y=kx+b(k≠0)反比例函數(shù)二次函數(shù)正比例函數(shù)y=kx(k≠0)??.0??kxky某果園有100棵橙子樹,每一棵樹平均結600個橙子.
2025-06-15 02:59
2025-06-15 02:53
【總結】第二章二次函數(shù)1二次函數(shù)【基礎梳理】二次函數(shù)的定義及相關概念若兩個變量x,y之間的對應關系可以表示成__________(a,b,c為常數(shù),a≠0)的形式,則稱y是x的二次函數(shù).其中__是二次項系數(shù),__是一次項系數(shù),__是常數(shù)項.y=ax2+bx+cabc【自我診斷】1.(1)y=
2025-06-12 12:36
2025-06-21 02:27
2025-06-19 06:55
【總結】溫州外國語學校曾小豆九年級下冊(北師大版)教材分析●體現(xiàn)“問題情境——建立數(shù)學模型——概念、規(guī)律、應用與拓展”的模式:?從實際問題情境中抽象二次函數(shù)函數(shù)概念?研究二次函數(shù)的圖象及其有關性質?二次函數(shù)的應用與聯(lián)系1設計思路二次函數(shù)1.二次函數(shù)所描述的關系(引
2024-11-09 06:17
【總結】二次函數(shù)cbxaxy???2的圖象(第二課時)清城中學【教材分析】本節(jié)課內容是北師版教材九年級下冊第二章第4節(jié)《二次函數(shù)cbxaxy???2的圖象》的第二課時。是在前面已經(jīng)學習、探究了函數(shù)2yax?和函數(shù)2yaxc??的圖象與性質后,繼續(xù)探究具有普遍意義和形式的函數(shù)cbx
2024-11-19 00:52
【總結】4二次函數(shù)的應用第二章二次函數(shù)課堂達標素養(yǎng)提升第二章二次函數(shù)第2課時最大利潤問題課堂達標一、選擇題第2課時最大利潤問題1.若一種服裝的銷售利潤y(萬元)與銷售數(shù)量x(萬件)之間滿足函數(shù)表達式y(tǒng)=-2x2+4x+5,則盈利的最值情況為()A.有最
2025-06-20 16:00
【總結】鍥而舍之,朽木不折;鍥而不舍,金石可鏤。
2024-12-07 22:57
【總結】函數(shù)函數(shù)知多少變量之間的關系一次函數(shù)y=kx+b(k≠0)反比例函數(shù)二次函數(shù)正比例函數(shù)y=kx(k≠0)??.0??kxky溫故知新回顧與思考二次函數(shù)素描述的關系源于生活的數(shù)學某果園有100棵橙子樹,每一棵樹平均結600個
2024-12-08 11:41
【總結】拋物線y=x2y=-x2頂點坐標對稱軸位置開口方向增減性最值(0,0)(0,0)y軸y軸在x軸的上方在x軸的下方向上向下最小值為0最大值為0二次函數(shù)y=x2與y=-x2的性質如圖所示如圖所示2xy?2xy??
2024-12-08 14:25
【總結】北師大版九年級數(shù)學下冊第二章質量檢測試題學校:___________姓名:___________班級:___________考號:___________評卷人得分一、選擇題1.二次函數(shù)y=-x2+2x+2化為y=a(x-h)2+k的形式,下列正確的是()A.y=-(x-1)2+2B.y=-(x-1)2+3C.y=(x-2)2+
2025-01-14 17:23
【總結】二次函數(shù)一、知識概述:看初中數(shù)學總復習52頁,填空:輕巧46頁.二、例題講解:(一)根據(jù)函數(shù)性質判定函數(shù)圖象之間的位置關系例:函數(shù)y=2axbxc??(a?0)的圖像如圖所示,試判斷:a_____0,b____0,c_______0,24bac?______0,(二)比較大
2024-12-02 23:33
【總結】第二章二次函數(shù)一、學生知識狀況分析學生的知識技能基礎:學生在之前已經(jīng)學習過變量、自變量、因變量、函數(shù)等概念,對一次函數(shù)、反比例函數(shù)的相關知識如:各種變量、函數(shù)的一般形式、圖像、增減性等知識有一定基礎,相關應用也較常見,學生在學二次函數(shù)前具備了一定函數(shù)方面的基礎知識、基本技能。學生活動經(jīng)驗基礎:在相關知識的學習過程中,學生已經(jīng)經(jīng)歷了一些解
2024-11-18 22:14