【總結】復習提問1、二次函數(shù)的解析式有哪幾種形式??(1)、一般式:y=ax2+bx+c?(2)、頂點式:y=a(x-h)2+k?(3)、交點式:y=a(x-x1)(x-x2)?2、二次函數(shù)y=ax2+bx+c的頂點坐標、對稱軸是什么??頂點坐標是(,)
2024-11-06 21:11
【總結】想一想復習回顧y=ax2+bx+c(a≠0)ax2+bx+c=0(a≠0)ax2+bx+c>0(a≠0)北師大版九年級數(shù)學(下)第二章說一說問題探究1、二次函數(shù)y=x2-2x-3的圖象的對稱軸和頂點坐標分別是什么?與y軸的交點呢?2、你能做出它的大致圖象嗎
2024-12-08 10:53
【總結】50/50
2025-06-26 11:53
【總結】剎車距離與二次函數(shù)一.剎車距離與二次函數(shù)你知道兩輛汽車在行駛時為什么要保持一定距離嗎?汽車剎車時向前滑行的距離(稱為剎車距離)與什么因素有關?影響剎車距離的最主要因素是汽車行駛的速度及路面的摩擦系數(shù).有研究表明,晴天在某段公路上行駛時,速度為v(km/h)的汽車的剎車距離s(m)可以由公式21001vs?確定
2024-11-19 08:25
【總結】第二章二次函數(shù)一、學生知識狀況分析學生的知識技能基礎:學生在之前已經(jīng)學習過變量、自變量、因變量、函數(shù)等概念,對一次函數(shù)、反比例函數(shù)的相關知識如:各種變量、函數(shù)的一般形式、圖像、增減性等知識有一定基礎,相關應用也較常見,學生在學二次函數(shù)前具備了一定函數(shù)方面的基礎知識、基本技能。學生活動經(jīng)驗基礎:在相關知識的學習過程中,學生已經(jīng)經(jīng)歷了一些解
2024-11-18 22:14
【總結】第二章二次函數(shù)y=ax2+bx+c的圖象(一)一、學生知識狀況分析學生的知識技能基礎:學生在前面幾節(jié)課已經(jīng)學習過并能夠獨立作出一個二次函數(shù)的圖像,掌握了二次函數(shù)y=ax2和y=ax2+c的一般性質。學生活動經(jīng)驗基礎:在相關知識的學習過程中,學生已經(jīng)經(jīng)歷了二次函數(shù)y=ax2和y=ax2+c的性質的探索過程,在探究過程中體會到了
2024-12-09 08:13
【總結】第二章二次函數(shù)第五節(jié)用三種方式表示二次函數(shù)?y隨x的而變化的規(guī)律是什么?你能分別用函數(shù)表達式、表格和圖象表示出來嗎?函數(shù)的表示方式?已知矩形周長為20cm,并設它的一邊長為xcm,面積為ycm2.做一做xy?用函數(shù)表達式表示:解析法—用表達式表示函數(shù)?已知矩形周長為
2024-12-08 14:25
【總結】第二章二次函數(shù)1.二次函數(shù)所描述的關系1.二次函數(shù)的概念形如y=ax2+bx+c(a、b、c是常數(shù),a≠0)的函數(shù)叫做二次函數(shù).2.列二次函數(shù)關系式列函數(shù)表達式的基本思路:(1)認真審題,弄清題中的自變量和因變量;(2)確定一共有幾個條件,每個條件和變量可以列出什么意義的代數(shù)式;(3)確定等量關
【總結】二次函數(shù)與一元二次方程(1)教學目標一、教學知識點1、經(jīng)歷探索二次函數(shù)與一元二次方程的關系的過程,體會方程與函數(shù)之間的聯(lián)系.2、理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的關系,理解何時方程有兩個不等的實根、兩個相等的實根和沒有實根.3、理解一元二次方程的根就是二次函數(shù)與y=h交點的橫坐標
2024-11-18 23:39
【總結】?1.拋物線y=ax2+bx+c經(jīng)過點(0,0)與(12,0),最高點縱坐標是3,求這條拋物線的表達式______?2.若a<0,b>0,c<0,△<0,那么拋物線y=ax2+bx+c經(jīng)過象限.?3.在平原上,一門迫擊炮發(fā)射的一發(fā)炮彈飛行的高度y(m)與飛行時間x(s)的關
2024-11-30 14:07
【總結】九年級數(shù)學(下)第二章二次函數(shù)y=ax2+bx+c的圖象(3)練習題陽泉市義井中學高鐵牛?例.求次函數(shù)y=ax2+bx+c的對稱軸和頂點坐標.函數(shù)y=ax2+bx+c的頂點式?一般地,對于二次函數(shù)y=ax2+bx+c,我們可以利用配方法推導出用各項系數(shù)a,b,c表示的對稱軸和頂
2024-11-06 21:12
【總結】寄語?不知道并不可怕和有害,任何人都不可能什么都知道,可怕的和有害的是不知道而偽裝知道.九年級數(shù)學(下)第二章二次函數(shù)7.最大面積是多少(1)二次函數(shù)的應用?(1).設矩形的一邊AB=xcm,那么AD邊的長度如何表示??(2).設矩形的面積為ym2,當x取何值時,y的最大值是多少?何時面積最大
2024-11-06 15:28
【總結】剎車距離與二次函數(shù)同步練習一、填空題:y=-3x2+5的開口向________,對稱軸是_______,頂點坐標是________,頂點是最_____點,所以函數(shù)有最________值是_____.y=4x2-1與y軸的交點坐標是_________,與x軸的交點坐標是_____.y=x2向上平移3個單位后,
2024-12-03 06:15
【總結】二次函數(shù)的應用第二章學習的目的在于應用,日常生活中,工農(nóng)業(yè)生產(chǎn)及商業(yè)活動中,方案的最優(yōu)化、最值問題,如盈利最大、用料最省、設計最佳等都與二次函數(shù)有關。一、根據(jù)已知函數(shù)的表達式解決實際問題:0xyhAB
【總結】九年級數(shù)學下冊二次函數(shù)回顧與思考?定義:一般地,形如y=ax2+bx+c(a,b,c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù)。?圖象:是一條拋物線。?圖象的特點:(1)有開口方向,開口大小。(2)有對稱軸。(3)有頂點(最低點或最高點)。oxyoxy?二次函數(shù)
2024-11-30 08:16