【總結(jié)】EFDCBA陜西省商南縣高級(jí)中學(xué)高一第二學(xué)期平面向量單元練習(xí)1.平面向量及其線性運(yùn)算,正確的是()A.若cbba//,//,則ca//B.對(duì)于任意向量ba,,有baba???C.若ba?,則ba?或ba??D.對(duì)于任意向量ba,,有baba???2.(
2024-11-30 11:35
【總結(jié)】平面向量數(shù)量積的坐標(biāo)表示教學(xué)目標(biāo)1.正確理解掌握兩個(gè)向量數(shù)量積的坐標(biāo)表示方法,能通過(guò)兩個(gè)向量的坐標(biāo)求出這兩個(gè)向量的數(shù)量積.2.掌握兩個(gè)向量垂直的坐標(biāo)條件,能運(yùn)用這一條件去判斷兩個(gè)向量垂直.3.能運(yùn)用兩個(gè)向量的數(shù)量積的坐標(biāo)表示去解決處理有關(guān)長(zhǎng)度、角度、垂直等問(wèn)題.重點(diǎn):兩個(gè)向量數(shù)量積的坐標(biāo)表示,向量的長(zhǎng)度公式,兩個(gè)向量垂直的充要條件.難點(diǎn)
2024-11-19 20:36
【總結(jié)】填一填練一練研一研本課時(shí)欄目開(kāi)關(guān)2.4.1向量在幾何中的應(yīng)用【學(xué)習(xí)要求】1.經(jīng)歷用向量方法解決某些簡(jiǎn)單的平面幾何問(wèn)題及其它一些實(shí)際問(wèn)題的過(guò)程.2.體會(huì)向量是一種處理幾何問(wèn)題的有力工具.3.培養(yǎng)運(yùn)算能力、分析和解決實(shí)際問(wèn)題的能力.【學(xué)法指導(dǎo)】由于向量涉及共線、夾角、垂直、
2025-06-17 17:01
【總結(jié)】二倍角例題講解兩角和與差的三角函數(shù)以及由它們推出的倍角公式是平面三角學(xué)的重要內(nèi)容,這部分內(nèi)容是同角三角函數(shù)關(guān)系及誘導(dǎo)公式的發(fā)展,是三角變換的基礎(chǔ).它揭示了復(fù)角三角函數(shù)與單角三角函數(shù)間的相互關(guān)系和內(nèi)在聯(lián)系.是研究復(fù)角三角函數(shù)的性質(zhì)和應(yīng)用三角函數(shù)知識(shí)解決有關(guān)問(wèn)題的有力工具.三角變換涉及范圍很廣,包括求值、化簡(jiǎn)、恒等證明、三角形形狀的判定、三角不等式的證明,三
2024-12-05 06:37
【總結(jié)】解三角形三角形中的有關(guān)問(wèn)題1.正弦定理:利用正弦定理,可以解決以下兩類(lèi)有關(guān)三角形的問(wèn)題:⑴已知兩角和一邊,求其他兩邊和一角;⑵已知兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角,從而進(jìn)一步求出其他的邊和角.2.余弦定理:利用余弦定理,可以解決以下兩類(lèi)有關(guān)三角形的問(wèn)
2024-11-30 23:41
【總結(jié)】從力做的功到向量的數(shù)量積●教學(xué)目標(biāo)1.通過(guò)實(shí)例,正確理解平面向量的數(shù)量積的概念,能夠運(yùn)用這一概念求兩個(gè)向量的數(shù)量積,并能根據(jù)條件逆用等式求向量的夾角;2.掌握平面向量的數(shù)量積的5個(gè)重要性質(zhì),并能運(yùn)用這些性質(zhì)解決有關(guān)問(wèn)題;3.通過(guò)平面向量的數(shù)量積的重要性質(zhì)猜想與證明,培養(yǎng)學(xué)生的探索精神和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度以及實(shí)際動(dòng)手能力;4
2024-12-05 01:51
【總結(jié)】正余弦定理常見(jiàn)解題類(lèi)型1.解三角形正弦定理常用于解決以下兩類(lèi)解斜三角形的問(wèn)題:①已知兩角和任一邊,求其他兩邊和一角;②已知兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角及其他的邊和角.余弦定理常用于解決以下兩類(lèi)解斜三角形的問(wèn)題:①已知三邊,求三個(gè)角;②已知兩邊和它們的夾角,求第三邊和其他兩個(gè)角.例1已知在ABC△中,4526Aac??
2024-11-19 08:01
【總結(jié)】第二章平面向量2一、向量的坐標(biāo)運(yùn)算課型A例1.已知向量a=(1,3),b=(3,n),若2a–b與b共線,則實(shí)數(shù)n的值是(B)A.6C.323?D323?例2.已知向量??52,5,2,1?????babaa,則b等于(
2024-12-05 06:38
【總結(jié)】平面向量數(shù)量積的坐標(biāo)表示一、教材分析1.本課的地位及作用:平面向量數(shù)量積的坐標(biāo)表示,就是運(yùn)用坐標(biāo)這一量化工具表達(dá)向量的數(shù)量積運(yùn)算,為研究平面中的距離、垂直、角度等問(wèn)題提供了全新的手段。它把向量的數(shù)量積與坐標(biāo)運(yùn)算兩個(gè)知識(shí)點(diǎn)緊密聯(lián)系起來(lái),是全章重點(diǎn)之一。:在此之前學(xué)生已學(xué)習(xí)了平面向量的坐標(biāo)表示和平面向量數(shù)量積概念及運(yùn)算,但數(shù)量積是用長(zhǎng)度和夾角這兩個(gè)概念
【總結(jié)】2020高中數(shù)學(xué)第二章《函數(shù)的單調(diào)性》說(shuō)課稿北師大版必修1一、教材分析函數(shù)的單調(diào)性是函數(shù)的重要性質(zhì).從知識(shí)的網(wǎng)絡(luò)結(jié)構(gòu)上看,函數(shù)的單調(diào)性既是函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、三角函數(shù)的單調(diào)性等內(nèi)容的基礎(chǔ),在研究各種具體函數(shù)的性質(zhì)和應(yīng)用、解決各種問(wèn)題中都有著廣泛的應(yīng)用.函數(shù)單調(diào)性概念的建立過(guò)程中蘊(yùn)涵諸多數(shù)學(xué)思想方法,對(duì)于進(jìn)一步探索、
2024-11-19 19:35
【總結(jié)】知識(shí)要點(diǎn):幾種基本語(yǔ)句1、偽代碼——介于自然語(yǔ)言和編程語(yǔ)言之間的算法描述語(yǔ)言。要求:每一條指令占一行,指令后不加任何標(biāo)點(diǎn)符號(hào),結(jié)構(gòu)清晰,指令明確,易于理解。根據(jù)偽代碼寫(xiě)程序的時(shí)候,不能直接嵌入程序,而常常要根據(jù)相關(guān)的語(yǔ)法規(guī)則進(jìn)行改造。2、輸入、輸出語(yǔ)句基本格式:3、賦值語(yǔ)句:基本格式:執(zhí)行賦
2024-12-08 02:38
【總結(jié)】從力做功到向量的數(shù)量積【學(xué)習(xí)目標(biāo)】(1)理解平面向量數(shù)量積的含義及其物理意義、幾何意義.(2)體會(huì)平面向量的數(shù)量積與向量投影的關(guān)系.(3)掌握平面向量數(shù)量積的運(yùn)算律和它的一些簡(jiǎn)單應(yīng)用.(4)能運(yùn)用數(shù)量積表示兩個(gè)向量的夾角,會(huì)用數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系.【學(xué)習(xí)重點(diǎn)】向量數(shù)量積的含義及其物理意義、幾何意義;
2024-12-04 23:43
【總結(jié)】雙基限時(shí)練(二十)向量平行的坐標(biāo)表示一、選擇題1.已知a=(-1,2),b=(2,y),若a∥b,則y的值是()A.1B.-1C.4D.-4解析由a∥b,得(-1)·y=2·2=4,∴y=-4,故選D.答案D2.已知A(k,1
2024-12-04 23:45
【總結(jié)】雙基限時(shí)練(二十一)從力做的功到向量的數(shù)量積一、選擇題1.下列命題①a+(-a)=0;②(a+b)+c=a+(b+c);③(a2b)2c=a2(b2c);④(a+b)2c=a2c+b2()A.0個(gè)B.
2024-12-04 20:39
【總結(jié)】"【志鴻全優(yōu)設(shè)計(jì)】2021-2021學(xué)年高中數(shù)學(xué)課后訓(xùn)練北師大版必修4"1.過(guò)點(diǎn)A(2,3),且垂直于向量a=(2,1)的直線方程為().A.2x+y-7=0B.2x+y+7=0C.x-2y+4=0D.x-2y-4=02.△ABC中,AB邊的高為CD,若CB