【總結(jié)】:)1(2baab??問(wèn)題探究.)2()0,0(22:)1.(122立的條件請(qǐng)寫(xiě)出上述兩式等號(hào)成②①請(qǐng)你證明探究??????baabbaabba.,1.,)1.(2請(qǐng)你找出并證明中的一個(gè)不等式著探究其中隱含形的直角三角形圍成正方分別為以四個(gè)全等的兩直角邊探究ABC
2025-03-12 14:58
【總結(jié)】例:x2+(m-3)x+m=0求m的范圍(1)兩個(gè)正根一元二次方程ax2+bx+c=0(a0)的根的分布??????????????00304)3(2mmmm??01mm??例:x2+(m-3)x+m=0求m的范圍
2025-03-13 05:16
【總結(jié)】第2課時(shí)基本不等式【課標(biāo)要求】1.理解并掌握定理1、定理2,會(huì)用兩個(gè)定理解決函數(shù)的最值或值域問(wèn)題.2.能運(yùn)用平均值不等式(兩個(gè)正數(shù)的)解決某些實(shí)際問(wèn)題.【核心掃描】1.基本不等式常用來(lái)考查函數(shù)最值等問(wèn)題,要注意不等式成立的前提條件.(重點(diǎn))2.實(shí)際應(yīng)用中的最值問(wèn)題通常轉(zhuǎn)化為y=ax+bx
2025-07-23 17:21
【總結(jié)】如果a,b∈R,那么a2+b2≥2ab(當(dāng)且僅當(dāng)a=b時(shí)取“=”)證明:222)(2baabba??????????????0)(0)(22babababa時(shí),當(dāng)時(shí),當(dāng)abba222??1.定理適用范圍:Rba?,2.取“=”的條件:ba?定理:
2025-11-09 08:48
【總結(jié)】菜單課后作業(yè)典例探究·提知能自主落實(shí)·固基礎(chǔ)高考體驗(yàn)·明考情新課標(biāo)·文科數(shù)學(xué)(安徽專用)第四節(jié)基本不等式菜單課
2025-01-06 16:33
【總結(jié)】基本不等式A組基礎(chǔ)鞏固1.若x0,y0,且2x+8y=1,則xy有()A.最大值64B.最小值164C.最小值12D.最小值64解析:xy=xy??????2x+8y=2y+8x≥22y·8x=8xy,∴xy≥8,即xy≥64,當(dāng)且僅當(dāng)???
2024-12-08 20:20
【總結(jié)】:2baab??復(fù)習(xí)引入基本不等式:.)0,0(2????baabba;222abba??講授新課.4,的最值,求是正數(shù)且abbaba??例1.講授新課.4,的最值,求是正數(shù)且abbaba??例1.變式1..42,的最值,求
2025-11-10 18:02
【總結(jié)】知識(shí)回顧1.基本不等式;(均值)2.基本不等式求最值的條件回顧練習(xí)。的最小值為恒成立,則實(shí)數(shù),且不等式,設(shè) __________kbakbaba.011001??????多大速度行駛?本最小,汽車(chē)應(yīng)以),為了使全程運(yùn)輸成元(;固定部分為為方成正比,且比例系數(shù))的平(單位度部分組成;可變部分
2025-03-12 14:59
【總結(jié)】知識(shí)回顧1.重要不等式;2.基本不等式。(均值)回顧練習(xí).abcdbdaccdabdcbacabcabcbaRcba4211222?????????))(證:(都為正數(shù),求,,,)已知 ?。?,求證:,,)設(shè):( 練習(xí)們的積最大?個(gè)正數(shù)取什么值時(shí),它這兩寫(xiě)成兩個(gè)正數(shù)的和,當(dāng))把 (
【總結(jié)】均值不等式的應(yīng)用(求最值)回顧一下重要不等式:均值不等式:222abab??(,0)2ababab???幾個(gè)重要的變形:2(0,0)ababab????2(,0)2ababab?????????222()(,)22a
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修5《基本不等式-實(shí)際應(yīng)用》審校:王偉?掌握建立不等式模型解決實(shí)際問(wèn)題.?教學(xué)重點(diǎn):?掌握建立不等式模型解決實(shí)際問(wèn)題教學(xué)目標(biāo)例1.一般情況下,建筑民用住宅時(shí)。民用住宅窗戶的總面積應(yīng)小于該住宅的占地面積,而窗戶的總面積與占地面積的比值越大
2025-01-15 12:36
【總結(jié)】基本不等式高中數(shù)學(xué)高一年級(jí)必修五第三章第三節(jié)學(xué)習(xí)目標(biāo)?學(xué)習(xí)目標(biāo):理解一元二次不等式的概念及其與二次函數(shù)、一元二次方程的關(guān)系。初步樹(shù)立“數(shù)形結(jié)合次函數(shù)、一元二次方程的關(guān)系。?學(xué)法指導(dǎo):發(fā)現(xiàn)、討論法;數(shù)形結(jié)合?!钡挠^念。掌握一元二次不等式的解法及步驟。?學(xué)習(xí)重點(diǎn)、難點(diǎn):一元二次不等式、二次函
2025-03-12 13:11
【總結(jié)】基本不等式以培養(yǎng)學(xué)生探究精神為出發(fā)點(diǎn),著眼于知識(shí)的生成和發(fā)展,著眼于學(xué)生的學(xué)習(xí)體驗(yàn),設(shè)置問(wèn)題,由淺入深、循序漸進(jìn),給不同層次的學(xué)生提供思考、創(chuàng)造和成功的機(jī)會(huì)。特進(jìn)行如下教學(xué)設(shè)計(jì):(一)設(shè)問(wèn)激疑,創(chuàng)設(shè)情景展示北京召開(kāi)的第24屆國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),讓學(xué)生思考,圖案由哪些幾何圖形拼湊而成,由此你能否找到一些相等或不等關(guān)系?接著通過(guò)三個(gè)問(wèn)題
【總結(jié)】《基本不等式》一、內(nèi)容與內(nèi)容解析本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)》人教A版必修5第三章《不等式》中《基本不等式》的第一課時(shí),主要內(nèi)容是探索基本不等式的生成和證明過(guò)程及其簡(jiǎn)單的應(yīng)用.本節(jié)內(nèi)容具有變通性、應(yīng)用性的特點(diǎn),它與線性規(guī)劃呈并列結(jié)構(gòu),可用來(lái)求某些函數(shù)的值域和最值,也可解決實(shí)際生活中的最優(yōu)化配置問(wèn)題.本節(jié)內(nèi)容由兩部分構(gòu)成,其一是
2024-12-08 07:03
【總結(jié)】:2baab??引入新課提問(wèn)1:我們把“風(fēng)車(chē)”造型抽象成下圖.在正方形ABCD中有4個(gè)全等的直角三角形.設(shè)直角三角形的兩條直角邊的長(zhǎng)為a、b,那么正方形的邊長(zhǎng)為多少?面積為多少呢?ADCBGEFH引入新課提問(wèn)1:我們把“風(fēng)車(chē)”造型抽象成下圖.在
2025-11-10 18:20