freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

人教a版(選修2-3)回歸分析的基本思想及其初步應(yīng)用(編輯修改稿)

2024-12-24 15:26 本頁(yè)面
 

【文章內(nèi)容簡(jiǎn)介】 abxy ??回歸模型: eabxy ???如何描述兩個(gè)變量之間線性相關(guān)關(guān)系的強(qiáng)弱? 在 《 數(shù)學(xué) 3》 中,我們學(xué)習(xí)了用相關(guān)系數(shù) r來(lái)衡量?jī)蓚€(gè)變量 之間線性相關(guān)關(guān)系的方法。 相關(guān)系數(shù) r 12211( ) ( ).( ) ( )niiinniiiix x y yx x y y???????????[ 5 1 ] ,[ 1 , 5 ] ,[ 0 25 , 5 ] ,rrr?? ? ???當(dāng) , 表 明 兩 個(gè) 變 量 正 相 關(guān) 很 強(qiáng) ;當(dāng) 表 明 兩 個(gè) 變 量 負(fù) 相 關(guān) 很 強(qiáng) ;當(dāng) . 表 明 兩 個(gè) 變 量 相 關(guān) 性 較 弱 。相關(guān)關(guān)系的測(cè)度 (相關(guān)系數(shù)取值及其意義) + 0 + 完全負(fù)相關(guān) 無(wú)線性相關(guān) 完全正相關(guān) 負(fù)相關(guān)程度增加 r 正相關(guān)程度增加 對(duì)回歸模型進(jìn)行統(tǒng)計(jì)檢驗(yàn) 思考 P6: 如何刻畫預(yù)報(bào)變量(體重)的變化?這個(gè)變化在多大程度上 與解析變量(身高)有關(guān)?在多大程度上與隨機(jī)誤差有關(guān)? 假設(shè)身高和隨機(jī)誤差的不同不會(huì)對(duì)體重產(chǎn)生任何影響,那么所有人的體重將相 同。 在體重不受任何變量影響的假設(shè)下,設(shè) 8名女大學(xué)生的體重都是她們的平均值, 即 8個(gè)人的體重都為 。 體重 /kg 170 155 165 175 170 157 165 165 身高 /cm 8 7 6 5 4 3 2 1 編號(hào) 在散點(diǎn)圖中,所有的點(diǎn)應(yīng)該落在同一條 水平直線上,但是觀測(cè)到的數(shù)據(jù)并非如 此。 這就意味著 預(yù)報(bào)變量(體重)的值 受解析變量(身高)或隨機(jī)誤差的影響 。 59 43 61 64 54 50 57 48 體重 /kg 170 155 165 175 170 157 165 165 身高 /cm 8 7 6 5 4 3 2 1 編號(hào) 例如,編號(hào)為 6的女大學(xué)生的體重并沒(méi)有落在水平直線上,她的體重為 61kg。解析 變量(身高)和隨機(jī)誤差共同把這名學(xué)生的體重從 “推”到了 61kg,相差 , 所以 組合效應(yīng) 。 編號(hào)為 3的女大學(xué)生的體重并也沒(méi)有落在水平直線上,她的體重為 50kg。解析 變量(身高)和隨機(jī)誤差共同把這名學(xué)生的體重從 50kg“推”到了 ,相差 , 這時(shí)解析變量和隨機(jī)誤差的組合效應(yīng)為 。 用這種方法可以對(duì)所有預(yù)報(bào)變量計(jì)算組合效應(yīng)。 數(shù)學(xué)上,把每個(gè)效應(yīng)(觀測(cè)值減去總的平均值)的平方加起來(lái),即用 21()n iiyy???表示總的效應(yīng),稱為 總偏差平方和 。 在例 1中,總偏差平方和為 354。 59 43 61 64 54 50 57 48 體重 /kg 170 155 165 175 170 157 165 165 身高 /cm 8 7 6 5 4 3 2 1 編號(hào) 那么,在這個(gè)總的效應(yīng)(總偏差平方和)中,有多少來(lái)自于解析變量(身高)? 有多少來(lái)自于隨機(jī)誤差? 假設(shè)隨機(jī)誤差對(duì)體重沒(méi)有影響,也就是說(shuō),體重僅受身高的影響,那么散點(diǎn)圖 中所有的點(diǎn)將完全落在回歸直線上。但是,在圖中,數(shù)據(jù)點(diǎn)并沒(méi)有完全落在回歸 直線上。 這些點(diǎn)散布在回歸直線附近,所以一定是隨機(jī)誤差把這些點(diǎn)從回歸直線上 “推”開了 。 在例 1中,殘差平方和約為 。 因此,數(shù)據(jù)點(diǎn)和它在回歸直線上相應(yīng)位置的差異 是隨機(jī)誤差的效應(yīng), 稱 為 殘差 。 )i iyy?(i i ie y y?=例如,編號(hào)為 6的女大學(xué)生,計(jì)算隨機(jī)誤差的效應(yīng)(殘差)為: 61 ( 165 ) ? ? ? ?對(duì)每名女大學(xué)生計(jì)算這個(gè)差異,然后分別將所得的值平方后加起來(lái),用數(shù)學(xué)符號(hào)
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)課件相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1