【總結(jié)】320已知函數(shù)()=,(0,1],,若()在(0,1]上是增函數(shù),求的取值范圍練。習(xí)2fxax-xxafxa??3[)2,??325例1:求參數(shù)的范圍若函數(shù)f(x)在(-,+)上單調(diào)遞增,求a的取值范圍
2024-11-18 15:25
【總結(jié)】第七章立體幾何第六節(jié)空間向量及其運(yùn)算抓基礎(chǔ)明考向提能力教你一招我來(lái)演練返回[備考方向要明了]考什么.,了解空間向量的基本定理及其意義,掌握空間向量的正交分解及其坐標(biāo)表示.
2025-05-03 08:38
【總結(jié)】第三章間向量與立體幾何§空間向量及其運(yùn)算知識(shí)點(diǎn)一空間向量概念的應(yīng)用給出下列命題:①將空間中所有的單位向量移到同一個(gè)點(diǎn)為起點(diǎn),則它們的終點(diǎn)構(gòu)成一個(gè)圓;②若空間向量a、b滿足|a|=|b|,則a=b;③
2024-12-08 22:40
【總結(jié)】復(fù)數(shù)z=a+bi直角坐標(biāo)系中的點(diǎn)Z(a,b)xyobaZ(a,b)建立了平面直角坐標(biāo)系來(lái)表示復(fù)數(shù)的平面x軸------實(shí)軸y軸------虛軸(數(shù))(形)------復(fù)數(shù)平面(簡(jiǎn)稱復(fù)平面)一一對(duì)應(yīng)z=a+bi復(fù)數(shù)的幾何意義(一)
2024-11-18 15:23
【總結(jié)】第一課時(shí)空間向量及其加減與數(shù)乘運(yùn)算教學(xué)要求:理解空間向量的概念,掌握其表示方法;會(huì)用圖形說明空間向量加法、減法、數(shù)乘向量及它們的運(yùn)算律;能用空間向量的運(yùn)算意義及運(yùn)算律解決簡(jiǎn)單的立體幾何中的問題.教學(xué)重點(diǎn):空間向量的加減與數(shù)乘運(yùn)算及運(yùn)算律.教學(xué)難點(diǎn):由平面向量類比學(xué)習(xí)空間向量.教學(xué)過程:一、復(fù)習(xí)引入1、有關(guān)平面向量的一
2024-11-19 22:43
【總結(jié)】直接證明楚水實(shí)驗(yàn)學(xué)校高二數(shù)學(xué)備課組1直接證明概念2直接證明的一般形式:本題結(jié)論已知定理已知公理已知定義本題條件??????????直接從原命題的條件逐步推得命題成立一、知識(shí)回顧:直接證明方法有幾種?都是直接證明綜合法:從已知條件出發(fā),以已知的定義、公理、定理為依據(jù),
2024-11-17 20:06
【總結(jié)】解及其坐標(biāo)表示lαOP例1在平面內(nèi)的一條直線,如果和這個(gè)平面的一條斜線的射影垂直,那么它也和這條斜線垂直。已知:如圖,PO,PA分別是平面α的垂線,斜線,AO是PA在平面α內(nèi)的射影,.:,,PAlOAll???求證且?AlαOP.,,OAPOal
2024-11-18 12:14
【總結(jié)】問題情境一4341112???4741222???5341332???6141442???7141552???的數(shù)都是質(zhì)數(shù)任何形如出猜想于是可以用歸納推理提都是質(zhì)數(shù),)(41*2Nnnn???結(jié)論是錯(cuò)誤的。是一個(gè)合數(shù)時(shí),因?yàn)?341414141414122????????nnn
【總結(jié)】y=x3-2x上的點(diǎn)(1,-1)的切線方程方程相切的直線且與曲線求過點(diǎn)11)1,1(.22??xy求過某點(diǎn)的曲線的切線方程時(shí),除了要判斷該點(diǎn)是否在曲線上,還要分“該點(diǎn)是切點(diǎn)”和“該點(diǎn)不是切點(diǎn)”兩種情況進(jìn)行討論,解法復(fù)制。若設(shè)M(x0,y0)為曲線y=f(x)上一點(diǎn),則以M為切點(diǎn)的曲線的切線方程可設(shè)為y-y0=f’(x
【總結(jié)】§3.空間向量運(yùn)算的坐標(biāo)表示知識(shí)點(diǎn)一空間向量的坐標(biāo)運(yùn)算設(shè)a=(1,5,-1),b=(-2,3,5).(1)若(ka+b)∥(a-3b),求k;(2)若(ka+b)⊥(a-3b),求k.解(1)ka+b=(k-2,5k+3,-k+5)
2024-11-20 03:14
【總結(jié)】§3.空間向量的數(shù)量積運(yùn)算知識(shí)點(diǎn)一求兩向量的數(shù)量積如圖所示,已知正四面體O-ABC的棱長(zhǎng)為a,求AB·OC..解由題意知|AB|=|AC|=|AO|=a,且〈AB,AO〉=120AB,CA〉=12
【總結(jié)】§3.空間向量的正交分解及其坐標(biāo)表示知識(shí)點(diǎn)一向量基底的判斷已知向量{a,b,c}是空間的一個(gè)基底,那么向量a+b,a-b,c能構(gòu)成空間的一個(gè)基底嗎?為什么?解∵a+b,a-b,c不共面,能構(gòu)成空間一個(gè)基底.假設(shè)a+b,a-b,c共面,則存在x,
2024-12-08 01:49
【總結(jié)】本資料由書利華教育網(wǎng)(又名數(shù)理化網(wǎng))為您整理2Z=a+bi(a,b∈R)實(shí)部!虛部!復(fù)數(shù)的代數(shù)形式:一個(gè)復(fù)數(shù)由有序?qū)崝?shù)對(duì)(a,b)確定本資料由書利華教育網(wǎng)(又名數(shù)理化網(wǎng))為您整理3實(shí)數(shù)可以用數(shù)軸上的點(diǎn)來(lái)表示。實(shí)數(shù)數(shù)軸上的點(diǎn)一一對(duì)應(yīng)(數(shù))(形)類比實(shí)數(shù)
2024-11-18 15:24
【總結(jié)】函數(shù)的最值與導(dǎo)數(shù)(1)()0fx???()為單調(diào)遞增函數(shù)fx(2)()0fx???()為單調(diào)遞減函數(shù)fx0(3)為極值點(diǎn)x?0()0fx??1、導(dǎo)數(shù)與單調(diào)性的關(guān)系復(fù)習(xí)xyo0x??左正右負(fù)極大左負(fù)右正極小左右同號(hào)無(wú)極值(2)由負(fù)變
【總結(jié)】楚水實(shí)驗(yàn)學(xué)校高二數(shù)學(xué)備課組數(shù)學(xué)歸納法(二)復(fù)習(xí)回顧:什么是數(shù)學(xué)歸納法?如果(1)當(dāng)n取第一個(gè)值n0時(shí)結(jié)論正確;(2)假設(shè)當(dāng)n=k(k∈N+,且k≥n0)時(shí)結(jié)論正確,證明當(dāng)n=k+1時(shí)結(jié)論也正確.那么,命題對(duì)于從n0開始的所有正整數(shù)n都成立數(shù)學(xué)歸納法公理··