【總結(jié)】利用導(dǎo)數(shù)研究函數(shù)的極值(二)一、基礎(chǔ)過關(guān)1.函數(shù)f(x)=-x2+4x+7,在x∈[3,5]上的最大值和最小值分別是()A.f(2),f(3)B.f(3),f(5)C.f(2),f(5)D.f(5),f(3)2.f(x)=x3-3x2+2在區(qū)間[-1,1]上的最大值
2024-11-19 10:30
【總結(jié)】利用導(dǎo)數(shù)研究函數(shù)的極值(一)一、基礎(chǔ)過關(guān)1.函數(shù)y=f(x)的定義域為(a,b),y=f′(x)的圖象如圖,則函數(shù)y=f(x)在開區(qū)間(a,b)內(nèi)取得極小值的點有()A.1個B.2個C.3個D.4個2.下列關(guān)于函數(shù)的極值的
2024-12-03 11:30
【總結(jié)】2020高中數(shù)學(xué)第二章《函數(shù)的單調(diào)性》說課稿北師大版必修1一、教材分析函數(shù)的單調(diào)性是函數(shù)的重要性質(zhì).從知識的網(wǎng)絡(luò)結(jié)構(gòu)上看,函數(shù)的單調(diào)性既是函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)的單調(diào)性等內(nèi)容的基礎(chǔ),在研究各種具體函數(shù)的性質(zhì)和應(yīng)用、解決各種問題中都有著廣泛的應(yīng)用.函數(shù)單調(diào)性概念的建立過程中蘊涵諸多數(shù)學(xué)思想方法,對于進一步探索、
2024-11-19 19:35
【總結(jié)】第二章函數(shù)§3函數(shù)的單調(diào)性(本欄目內(nèi)容,在學(xué)生用書中以活頁形式分冊裝訂!)一、選擇題(每小題5分,共20分),在區(qū)間(0,2)上為增函數(shù)的是…………………………………()=3-=x2+1=-x2=x2-2x-3【解析】畫圖可知,y=x2+1在(0,+∞
2024-11-15 03:18
【總結(jié)】導(dǎo)數(shù)與函數(shù)的單調(diào)性、極值、最值適用學(xué)科高中數(shù)學(xué)適用年級高中三年級適用區(qū)域通用課時時長(分鐘)60知識點函數(shù)的單調(diào)性函數(shù)的極值函數(shù)的最值教學(xué)目標掌握函數(shù)的單調(diào)性求法,會求函數(shù)的函數(shù)的極值,會求解最值問題,教學(xué)重點會利用導(dǎo)數(shù)求解函數(shù)的單調(diào)性,會求解函數(shù)的最值。教學(xué)難點熟練掌握函數(shù)的單調(diào)性、極值、最值的求法,以及分類討論思想的應(yīng)用
2025-07-26 05:39
【總結(jié)】第三章導(dǎo)數(shù)應(yīng)用§1函數(shù)的單調(diào)性與極值導(dǎo)數(shù)與函數(shù)的單調(diào)性雙基達標?限時20分鐘?1.函數(shù)f(x)=2x-sinx在(-∞,+∞)上().A.增函數(shù)B.減函數(shù)C.有最大值D.有最小值解析∵f′(x)=2-cosx0,∴f(x)是
2024-12-03 00:14
【總結(jié)】第1課時導(dǎo)數(shù)與函數(shù)的單調(diào)性,直觀探索并掌握函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系...對于函數(shù)y=x3-3x,如何判斷單調(diào)性呢?你能畫出該函數(shù)的圖像嗎?定義法是解決問題的最根本方法,但定義法較繁瑣,又不能畫出它的圖像,那該如何解決呢?問題1:增函數(shù)和減函數(shù)一般地,
2024-11-19 23:14
【總結(jié)】數(shù)學(xué)命題?一、判斷與命題?1.判斷?判斷是對思維對象有所斷定的一種思維形式。這里所說的斷定,就是“肯定”或“否定”事物的某種性質(zhì)或事物之間有某種關(guān)系。如:是無理數(shù);它不是一位教師。?判斷作為一種思維形式,具有兩個基本的邏輯特征:?(1)必須有斷定。
2024-11-17 15:05
【總結(jié)】數(shù)學(xué):2.1《橢圓》第一課時F2F1M只需將x,y交換位置即得橢圓的標準方程.xyo如果以橢圓的焦點所在直線為y軸,且F1、F2的坐標分別為(0,-c)和(0,c),a、b的含義都不變,那么橢圓又有怎樣的標準方程呢?如果已知橢圓的標準方程
2024-11-17 17:38
【總結(jié)】一、課內(nèi)訓(xùn)練:1.確定下列函數(shù)的單調(diào)區(qū)間(1)y=x3-9x2+24x(2)y=x-x3(1)解:y′=(x3-9x2+24x)′=3x2-18x+24=3(x-2)(x-4)令3(x-2)(x-4)>0,解得x>4或x<2.∴y=x3-9x2+24x的單調(diào)增區(qū)間是(4,+∞)和(-∞,2)令3(x-2)(x-4)<0,解得2<x<4.∴y=x3-9x2+24x的
2025-03-24 12:17
【總結(jié)】導(dǎo)數(shù)在函數(shù)的單調(diào)性、極值中的應(yīng)用一、知識梳理1.函數(shù)的單調(diào)性與導(dǎo)數(shù)在區(qū)間(a,b)內(nèi),函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負有如下關(guān)系:如果f_′(x)0,那么函數(shù) y=f(x)在這個區(qū)間內(nèi)單調(diào)遞增;如果f_′(x)0,那么函數(shù) y=f(x)在這個區(qū)間內(nèi)單調(diào)遞減;如果f_′(x)=0,那么 f(x)在這個區(qū)間內(nèi)為常數(shù).問題探究1:若函數(shù) f(x)在(a,b)內(nèi)
2025-08-04 07:33
【總結(jié)】2020高中數(shù)學(xué)第二章《函數(shù)的單調(diào)性》參考教案北師大版必修1一、教材分析-----教學(xué)內(nèi)容、地位和作用本課是北師大版新課標普通高中數(shù)學(xué)必修一第二章第3節(jié)《函數(shù)的單調(diào)性》的內(nèi)容,函數(shù)的單調(diào)性是函數(shù)眾多性質(zhì)中的重要性質(zhì)之一,函數(shù)的單調(diào)性一節(jié)中的知識是今后研究具體函數(shù)的單調(diào)性理論基礎(chǔ);在解決函數(shù)值域、定義域、不等式、比較兩數(shù)大小等具體問題中均有著廣泛的應(yīng)
2024-11-19 23:19
【總結(jié)】2020高中數(shù)學(xué)第二章《函數(shù)的單調(diào)性》教學(xué)設(shè)計北師大版必修1【教學(xué)目標】【知識目標】:使學(xué)生從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念,學(xué)會利用函數(shù)圖像理解和研究函數(shù)的性質(zhì),初步掌握利用函數(shù)圖象和單調(diào)性定義判斷、證明函數(shù)單調(diào)性的方法.【能力目標】通過對函數(shù)單調(diào)性定義的探究,滲透數(shù)形結(jié)合數(shù)學(xué)思想方法,培養(yǎng)學(xué)生觀察、歸納、抽象的能力和語言表達能力;通過對函數(shù)單
【總結(jié)】第三節(jié)函數(shù)的單調(diào)性與極值一、函數(shù)的單調(diào)性二、函數(shù)的極值三、函數(shù)的最大值和最小值一、函數(shù)的增減性判別法bayO?xAB)(xfy?0)()(??xfa,曲線上升AaOybx?B)(xfy?0)()(??xfb,曲線下降定理1設(shè)函數(shù)f(
2024-10-17 12:42
【總結(jié)】第四節(jié)函數(shù)的單調(diào)性與極值一、函數(shù)的單調(diào)性二、函數(shù)的極值一、函數(shù)的單調(diào)性xyo()yfx?abAB()0fx??xyoabBA()yfx?()0fx??()[,](,).yfxabab?設(shè)函數(shù)在上連續(xù),在內(nèi)可導(dǎo)
2024-10-17 11:46