【總結(jié)】2020屆高考數(shù)學復習強化雙基系列課件25《平面向量及向量的基本運算》1)向量的有關概念①向量:既有大小又有方向的量。向量一般用……來表示,或用有向線段的起點與終點的大寫字母表示,如:。向量的大小即向量的模(長度),記作||。②零向量:長度為0的向量,記為,其方向
2024-11-10 00:27
【總結(jié)】2022屆高考數(shù)學復習強化雙基系列課件25《平面向量及向量的基本運算》1)向量的有關概念①向量:既有大小又有方向的量。向量一般用……來表示,或用有向線段的起點與終點的大寫字母表示,如:。向量的大小即向量的模(長度),記作||。②零向量:長度為0的向量,記為,其方向
2024-08-03 15:40
【總結(jié)】4.平面向量的基本定理、平面向量的坐標表示及平面向量的坐標運算.5.平面向量的數(shù)量積及向量的應用.1.向量的概念,向量的幾何表示,共線向量的概念.2.向量的加法、減法法則.3.實數(shù)與向量的積、兩個向量共線的充要條件.3.掌握平面向量的數(shù)量積及其幾何意義,能用平面向量的數(shù)量積處理有關長度、角度和垂直的
2025-05-19 17:09
【總結(jié)】第五章平面向量一平面向量的概念及基本運算【考點闡述】向量.向量的加法與減法.實數(shù)與向量的積.平面向量的坐標表示.【考試要求】(1)理解向量的概念,掌握向量的幾何表示,了解共線向量的概念.(2)掌握向量的加法和減法.(3)掌握實數(shù)與向量的積,理解兩個向量共線的充要條件.21世紀教育網(wǎng)(4),掌握平面向量的坐標運算.【考題分類】(一)選擇題(共2題)
2025-06-07 23:44
【總結(jié)】平面向量名師答疑平面向量的基本定理向量平面向量的坐標表示平移向量的數(shù)量積兩個非零向量垂直的充要條件余弦定理正線定理斜三角形的解法及其應用線段定比分點坐標公式兩個向量共線的充要條件向量的線性運算知識結(jié)構(gòu)(一)知識點歸納
2024-11-10 08:35
【總結(jié)】課件設計:北師大南山附校榮紅莉教材分析教法學法教學過程教學反饋重點難點教學目標《平面向量坐標運算》教學說明教材的地位和作用本節(jié)內(nèi)容在教材中有著承上啟下的作用。向量用坐標表示后,對立體幾何教材的改革也有著深遠的意義,可使空間結(jié)構(gòu)系統(tǒng)
2024-11-10 07:56
【總結(jié)】2020屆高考數(shù)學復習強化雙基系列課件12《平面向量-平面向量的應用》1.知識精講:掌握向量的概念、坐標表示、運算性質(zhì),做到融會貫通,能應用向量的有關性質(zhì)解決諸如平面幾何、解析幾何等的問題.cos?abab?一、知識回顧12122222112
2024-11-09 08:48
【總結(jié)】向量的減法baOaaaaaaaabbbbbbbBbaAa+b一、復習:1.向量加法法則:三角形法則baAaaaaaaaabbbBbaDaCba+b平行四邊形法則
2024-08-24 21:42
【總結(jié)】平面向量的實際背景及基本概念平面向量的線性運算——教材解讀山東劉乃東一、要點精講1.向量的有關概念(1)向量:既有大小又有方向的量叫向量,一般用,,,…來表示,或用有向線段的起點與終點的大寫字母表示,如。向量的大小,即向量的模(長度),記作。注:向量與數(shù)量不同,數(shù)量之間可以比較大小,而兩個向量不能比較大小。(2)零向量:長度為零的向量
2024-08-30 16:13
【總結(jié)】ABC(2)飛機從A到B,再改變方向從B到C,則兩次的位移的和應是:ABC(3)船的速度為,水流的速度為,則兩個速度的和是:ABC由此得什么結(jié)論?(1)一人從A到
2024-08-01 07:21
【總結(jié)】平面向量一、本章知識體系?重點及難點:向量概念;向量共線的充要條件;平面向量基本定理;向量的數(shù)量積定義,及運算程及運用;定比分是公式;平移公式及應用;用正、余弦定理解三角形。?常考內(nèi)容:平面向量的概念及運算;向量數(shù)量積的,應用向量知識解決向量平行、垂直、角度和長度等問題,解斜三角形。?例如圖:△AB
2024-11-09 00:20
【總結(jié)】::CBAABCD一.向量的加法:首尾相接共同起點ab?ab?aabbbab二.向量的減法:BADab?a共同起點指向被減數(shù)溫故知新1.當時:0??2.當時:0
2024-08-24 23:54
【總結(jié)】(文)已知向量(Ⅰ)若,求的值;(Ⅱ)若求的值。答案:(Ⅰ)因為,所以于是,故(Ⅱ)由知,所以從而,即,,,所以,或.因此,或來源:09年高考湖南卷題型:解答題,難度:中檔已知向量a=(cosθ,sinθ),向量b=(,-1),則|2a-b|的最大值、最小值分別是(A)
2025-01-14 11:40
【總結(jié)】第4節(jié)平面向量的應用(對應學生用書第66頁)1.向量在平面幾何中的應用平面向量在平面幾何中的應用主要是用向量的線性運算和數(shù)量積解決平行、垂直、長度、夾角等問題.設a=(x1,y1),b=(x2,y2),①證明線線平行或點共線問題,主要利用共線向量定理,即a∥b?a=λb(b≠0)?x1y2-x
2024-11-11 06:00
【總結(jié)】北師大南山附中榮紅莉Email:平面向量的坐標運算xy0A(x,y)a《平面向量坐標運算》教學說明教材分析教法學法教學過程教學評價重點難點教學目標教材的地位和作用承上啟下;推進了立體幾何的改革;使空間結(jié)構(gòu)系
2024-11-09 00:34