【總結(jié)】直線與圓錐曲線練習一=mx+1與橢圓x2+4y2=1只有一個公共點,那么m2的值是()A.1/2B.3/4C.2/3D.4/5,則的取值范圍是()A.B.C.D.=0被拋物線y2=6x所截得的弦長為()A.5
2025-08-05 09:50
【總結(jié)】直線與圓錐曲線一、直線與圓錐曲線的位置關(guān)系相離——沒有公共點相切——一個公共點相交——一個或兩個公共點0??0??0??032???yxA、032???yxB、032C???yx、092D???yx、02??yx142522??yx1、(B12)與直線
2025-08-05 09:03
【總結(jié)】直線與雙曲線的位置關(guān)系相交相切相離沒有交點一個交點兩個交點、一個交點直線與雙曲線相交相交弦長公式|AB|=2121xxk??21211yyk??|AB|=例1過點P(1,)的直線與雙曲線21322??yx
2025-07-23 08:32
【總結(jié)】二00五年十一月執(zhí)教:杭州市余杭高級中學吳寅靜直線與圓錐曲線的位置關(guān)系認真做事能把事做對,用心做事能把事做好。判斷直線與雙曲線位置關(guān)系的一般思路一元一次方程一元二次方程直線與雙曲線的漸近線平行相交(一個公共點)計算判別式△0△=0△0
2024-11-09 04:00
【總結(jié)】下頁上頁首頁小結(jié)結(jié)束江門市新會第一中學洪偉榮下頁上頁首頁小結(jié)結(jié)束復習與提高關(guān)于雙曲線漸近線的進一步探討:共漸近線的雙曲線系下頁上頁首頁小
2024-11-06 19:22
【總結(jié)】直線和圓錐曲線經(jīng)??疾榈囊恍╊}型題型五:共線向量問題解析幾何中的向量共線,就是將向量問題轉(zhuǎn)化為同類坐標的比例問題,再通過未達定理------同類坐標變換,將問題解決。此類問題不難解決。例題7、設(shè)過點D(0,3)的直線交曲線M:于P、Q兩點,且,求實數(shù)的取值范圍。分析:由可以得到,將P(x1,y1),Q(x2,y2),代人曲線方程,解出點的坐標,用表示出來。解:設(shè)P(x1,
2025-07-22 16:58
【總結(jié)】直線和圓錐曲線經(jīng)常考查的一些題型直線與橢圓、雙曲線、拋物線中每一個曲線的位置關(guān)系都有相交、相切、相離三種情況,從幾何角度可分為三類:無公共點,僅有一個公共點及有兩個相異公共點對于拋物線來說,平行于對稱軸的直線與拋物線相交于一點,但并不是相切;對于雙曲線來說,平行于漸近線的直線與雙曲線只有一個交點,但并不相切.直線和橢圓、雙曲線、拋物線中每一個曲線的公共點問題,可以轉(zhuǎn)化為它們的方程所
2025-07-22 16:59
【總結(jié)】第二期骨干教師國家級培訓班(數(shù)學)學員封貞琴例1已知雙曲線X2-y2=4,試討論直線y=k(x-1)與雙曲線的公共點個數(shù).你的猜想正確嗎?觀察并提出猜想直線與雙曲線的公共點個數(shù)為:2或1或0?將y=k(x-1)代入x2-
2024-11-17 17:16
【總結(jié)】直線與圓錐曲線的位置關(guān)系焦半徑公式02xpAF??01exaAF??02exaAF??橢圓雙曲線aexAF??01拋物線02xpAF??02ypAF??02ypAF??特別地,拋物線的焦點弦長為21xxpAB???)(21xxpAB???21yypAB???)(
2025-08-05 18:28
【總結(jié)】......直線圓錐曲線與向量的綜合問題高考考什么知識要點:1.直線與圓錐曲線的公共點的情況(1)沒有公共點方程組無解(2)一個公共點(3)兩個公共點2.連結(jié)圓錐曲線上兩個點的線段
2025-03-25 06:30
【總結(jié)】直線和雙曲線的位置關(guān)系作課教師簡介:周萍,畢業(yè)于齊齊哈爾師范學院數(shù)學系,中學一級教師,教齡12年,省級教學能手,市、縣級骨干教師,市優(yōu)秀實驗教師,縣科研骨干教師。直線和橢圓的位置關(guān)系:相交相切相離→兩個公共點→一個公共點→沒
2024-11-16 21:27
【總結(jié)】......直線圓錐曲線有關(guān)向量的問題高考考什么知識要點:1.直線與圓錐曲線的公共點的情況(1)沒有公共點方程組無解(2)一個公共點(3)兩個公共點2.連結(jié)圓錐曲線上兩個點的線段稱
2025-03-25 06:29
【總結(jié)】直線與圓錐曲線測試題一選擇題(本大題共12小題,每小題3分,共36分.在每小題給出的四個選項中,只有一項是符合題目要求的)1直線l1:y=x+1,l2:y=x+2與橢圓C:3x2+6y2=8的位置關(guān)系是Al1,l2與C均相交 Bl1與C相切,l2與C相交Cl1與C相交,l2與C相切 Dl1,l2與均相離2(
【總結(jié)】直線與圓1.(1)求經(jīng)過點A(5,2),B(3,2),圓心在直線2x-y-3=0上的圓的方程;(2)設(shè)圓上的點A(2,3)關(guān)于直線x+2y=0的對稱點仍在這個圓上,且與直線x-y+1=0相交的弦長為,求圓方程.,焦點在x軸上,離心率為,且橢圓經(jīng)過圓C:的圓心C。(1)求橢圓的方程;(2)設(shè)直線過橢圓的焦點且與圓C相切,求直線的方程。、,點為坐標平面內(nèi)的動點,
2025-08-17 03:21
【總結(jié)】平面內(nèi)到兩定點F1、F2距離之和為常數(shù)2a(①)的點的軌跡叫橢圓.有|PF1|+|PF2|=2a.在定義中,當②時,表示線段F1F2;當③時,不表示任何圖形.2a>|F1F2|2a=|F1F2|2a<
2025-08-09 15:25