【總結(jié)】微積分Ⅰ1第九章重積分§二重積分的計算一、利用直角坐標計算二重積分二、利用極坐標計算二重積分三、小結(jié)微積分Ⅰ2第九章重積分一、利用直角坐標計算二重積分bxa??),()(21xyx????)(2xy??abD)(1xy??Dba)(2x
2025-01-19 21:34
【總結(jié)】問題???dxxex解決思路利用兩個函數(shù)乘積的求導法則.設(shè)函數(shù))(xuu?和)(xvv?具有連續(xù)導數(shù),??,vuvuuv???????,vuuvvu?????,dxvuuvdxvu??????.duvuvudv????分部積分公式第三節(jié)分部積分法容易計算.例1求積分.
2024-07-31 11:11
【總結(jié)】第二講微積分基本公式?內(nèi)容提要1.變上限的定積分;-萊布尼茲公式。?教學要求;-萊布尼茲公式。?21)(TTdttv)()(12TsTs?一、變上限的定積分).()()(1221TsTsdttvTT????).()(tvts??其中一般地,若?
2025-05-15 01:35
【總結(jié)】2022/8/271歡迎你!清華園的新主人2022/8/2722022/8/273微積分E-mail:講課教師陸小援Tel:627823272022/8/274參考書目:1.《微積分教程》韓云瑞等清華大學出版社3.《微積分
2024-08-14 09:15
【總結(jié)】2021/11/101作業(yè)P88習題5(1).7.8(2)(4).9(1).10(3).P122綜合題:4.5.復習:P80——88預習:P89——952021/11/102應(yīng)用導數(shù)研究函數(shù)性態(tài)局部性態(tài)—未定型極限
2024-10-18 22:27
【總結(jié)】·1·微積分章學誠劉西垣編著普通高等教育“十一五”家級規(guī)劃教材(經(jīng)濟管理類)第三章·2·第三章導數(shù)和微分導數(shù)概念求導法則基本求導公式高階導數(shù)函數(shù)的微分導數(shù)和微分在經(jīng)濟學中的簡單應(yīng)用
2024-12-08 08:41
【總結(jié)】《微積分初步》課程復習指導(統(tǒng)設(shè)必修??疲┮?、考試題型1、單項選擇題(5題,共20分)2、填空題(5題,共20分)3、計算題(4題,共44分)4、應(yīng)用題(1題,16分)期末考試采用閉卷筆試形式,卷面滿分為100分,考試時間為90分鐘。二、考試說明1本課程的考核形式為形成性考核和期末考試相結(jié)合的方式,本課程形成性考核為課程平時作業(yè)。
2025-06-07 18:22
【總結(jié)】特點:)(0xf?)(0xf??第七節(jié)泰勒公式一、泰勒公式的建立)(xfxy)(xfy?o))(()(000xxxfxf????以直代曲0x)(1xp在微分應(yīng)用中已知近似公式:需要解決的問題如何提高精度?如何估計誤差?xx的一次多項式
2024-08-10 16:25
【總結(jié)】1微積分基本公式問題的提出積分上限函數(shù)及其導數(shù)牛頓—萊布尼茨公式小結(jié)思考題作業(yè)(v(t)和s(t)的關(guān)系)★☆☆fundamentalformulaofcalculus第4章定積分與不定積分2通過定積分的物理意義,例變速直線運動中路
2025-02-21 10:32
【總結(jié)】第一節(jié)數(shù)列極限的定義和性質(zhì)一、數(shù)列極限的定義定義:依次排列的一列數(shù)??,,,,21nxxx稱為無窮數(shù)列,簡稱數(shù)列,記為}{nx.其中的每個數(shù)稱為數(shù)列的項,nx稱為通項(一般項).例如;,2,,8,4,2??n;,21,,81,41,21??n}2{
2025-01-19 08:23
【總結(jié)】微積分的名稱?Calculus一詞是源自拉丁文,原意是指石子。因為古歐洲人喜歡用石子來幫助計算,所以calculus被引申作計算的意思。?現(xiàn)時醫(yī)學上仍用calculus一詞代表石子。例:acalculousman不是指一位精通微積分的人,而是一位患腎結(jié)石的病人!?微積分這個中文詞,最早見諸清代數(shù)學家李善蘭和英國
2024-09-29 08:13
【總結(jié)】定積分與微積分基本定理習題一、選擇題1.a(chǎn)=xdx,b=exdx,c=sinxdx,則a、b、c的大小關(guān)系是( )A.a(chǎn)cb B.a(chǎn)bcC.cba D.cab2.由曲線y=x2,y=x3圍成的封閉圖形面積為( )練習、設(shè)點P在曲線y=x2上從原點到A(2,4)移動,
2025-04-17 13:04
【總結(jié)】聊聊天微積分的產(chǎn)生——17、18、19世紀的微積分.很久很久以前,在很遠很遠的一塊古老的土地上,有一群智者……開普勒、笛卡爾、卡瓦列里、費馬、帕斯卡、格雷戈里、羅伯瓦爾、惠更斯、巴羅、瓦里斯、牛頓、萊布尼茨、…….任何研究工作的開端,幾乎都是極不完美的嘗試,
2024-08-10 15:02
【總結(jié)】第四節(jié)高階導數(shù)引例:變速直線運動),(tss?)()(tstv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tstvta定義.)())((,)()(lim))((,)()(0處的二階導數(shù)在點為函數(shù)則稱存在即處可導在點的導數(shù)如果函數(shù)xxfxfxxfxxfxf
2025-04-21 04:25
【總結(jié)】第二節(jié)求導法則一、和、差、積、商的求導法則定理并且可導處也在點分母不為零們的和、差、積、商則它處可導在點如果函數(shù),)(,)(),(xxxvxu).0)(()()()()()(])()([)3();()()()(])()([)2();()(])()([)1(2????????????
2025-04-21 03:39